
© by the authors
See also CEUR-WS.org site: http://ceur-ws.org/Vol-3008/

@inproceedings{Vietz2021_QuantumSoftwareEngineeringChallenges,
author = {Vietz, Daniel and Barzen, Johanna and Leymann, Frank and

Weder, Benjamin and Yussupov, Vladimir},
title = {{An Exploratory Study on the Challenges of Engineering

Quantum Applications in the Cloud}},
booktitle = {Proceedings of the 2nd Quantum Software Engineering and

Technology Workshop (Q-SET 2021) co-located with IEEE
International Conference on Quantum Computing and
Engineering (QCE21)},

year = 2021,
month = oct,
pages = {1--12},
publisher = {CEUR Workshop Proceedings}

}

:

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{vietz, barzen, leymann, weder, yussupov}@iaas.uni-stuttgart.de

An Exploratory Study on the Challenges of
Engineering Quantum Applications in the Cloud

Daniel Vietz, Johanna Barzen, Frank Leymann,
Benjamin Weder, and Vladimir Yussupov

Institute of Architecture of Application Systems

http://ceur-ws.org/Vol-3008/

An Exploratory Study on the Challenges of
Engineering Quantum Applications in the Cloud
Daniel Vietz, Johanna Barzen, Frank Leymann, Benjamin Weder and
Vladimir Yussupov

University of Stuttgart, Institute of Architecture of Applications Systems, Universitätsstr. 38, 70569 Stuttgart, Germany

Abstract
The rapid evolution of quantum computation in the cloud creates considerable opportunities for mul-
tiple real-world application scenarios, including chemical simulation, optimization, and machine learn-
ing. Typical quantum applications are hybrid as they consist of both classical and quantum components.
The latter require quantum computers for execution, which are often o�ered as cloud services. Thus,
to implement quantum applications, developers need to have expertise in integration of quantum and
classical components of the application, as well as understanding the relevant cloud-speci�c challenges
and limitations. In this work, we explore the challenges which can be encountered when designing and
implementing hybrid quantum applications in the cloud and identify which limitations of current quan-
tum cloud services make such integration complex. To achieve this, we (i) implemented four quantum
applications highlighting di�erent scenarios of using quantum software components in cloud applica-
tions and (ii) analyzed the challenges and limitations encountered during the implementation process
and documented the key observations. In addition, we discuss open research questions and ways to
address them to improve the process of developing quantum applications in the cloud.

Keywords
Cloud Computing, Quantum Computing, Hybrid Quantum Applications, Quantum-Classic Integration

1. Introduction

Quantum computing is an emerging �eld, which promises to solve many problems from di�erent
domains more e�ciently or with better precision compared to classical computers [1, 2, 3], e.g.,
optimization, machine learning, or simulation of chemical molecules [4]. Quantum computers
are often provided as cloud services, making them available to a broader audience and allowing
their usage in real application scenarios [5]. However, existing quantum computers are limited
in available resources and prone to errors, e.g., due to the instability of the generated quantum
states [6, 7]. In addition, operations on quantum computers are often imprecise. Thus, current
quantum computers are referred to as Noisy Intermediate-Scale Quantum (NISQ) [6] computers.
Due to these limitations and given the fact that quantum computers are only superior in certain
cases, they cannot fully replace their classical counterparts [1, 6]. Instead, quantum computers

2nd Quantum Software Engineering and Technology Workshop, co-located with IEEE International Conference on
Quantum Computing and Engineering (QCE21) (IEEE Quantum Week 2021), October 18–22, 2021
� vietz@iaas.uni-stuttgart.de (D. Vietz); barzen@iaas.uni-stuttgart.de (J. Barzen); leymann@iaas.uni-stuttgart.de
(F. Leymann); weder@iaas.uni-stuttgart.de (B. Weder); yussupov@iaas.uni-stuttgart.de (V. Yussupov)
� 0000-0003-1366-5805 (D. Vietz); 0000-0001-8397-7973 (J. Barzen); 0000-0002-9123-259X (F. Leymann);
0000-0002-6761-6243 (B. Weder); 0000-0002-6498-637X (V. Yussupov)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:vietz@iaas.uni-stuttgart.de
mailto:barzen@iaas.uni-stuttgart.de
mailto:leymann@iaas.uni-stuttgart.de
mailto:weder@iaas.uni-stuttgart.de
mailto:yussupov@iaas.uni-stuttgart.de
https://orcid.org/0000-0003-1366-5805
https://orcid.org/0000-0001-8397-7973
https://orcid.org/0000-0002-9123-259X
https://orcid.org/0000-0002-6761-6243
https://orcid.org/0000-0002-6498-637X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

can be employed for solving only speci�c tasks they are best suited for, whereas the remaining
tasks are performed using classical computers, e.g., preparing inputs for quantum algorithms,
storing data, or processing user interactions [8]. Therefore, such hybrid quantum applications,
or hQApps for short, inherently combine both worlds: classical and quantum computers.
Consequently, to implement hQApps in the cloud, software engineers need to deal with

the implementation and integration of quantum software components that rely on specialized
services such as IBM Quantum (IBMQ) [9], AWS Braket [10], or Azure Quantum [11], and
classical software implemented using traditional cloud o�erings. As a result, the development
of hQApps requires a team that combines not only quantum-speci�c expertise but also expertise
in more traditional domains such as cloud computing, software integration, service-oriented
architectures, and work�ow technology [12]. Therefore, it is crucial to understand the challenges
such interdisciplinary teams of hQApps developers are facing.
In this work, we explore common challenges from di�erent domains which can be encoun-

tered when designing and implementing hQApps that combine traditional and quantum cloud
o�erings from commercial providers. Therefore, the main research question in this work can be
formulated as follows: “Which design and implementation challenges are commonly encountered
when engineering hQApps in the cloud?”
To address this question, we (i) design and implement four quantum application scenarios

based on the existing literature focusing on engineering hQApps [13, 14]. As a result, we
present scenarios using di�erent types of interaction and of varying complexity: from a “simple”
application generating random bit strings to composite applications that involve integrating
di�erent quantum tasks and hybrid algorithms that rely on optimization loops. Next, we
(ii) analyze the challenges encountered during the design and implementation of each application
scenario, and (iii) discuss key observations and open research questions.

After having covered the background and fundamentals in Section 2, Section 3 presents the
implemented scenarios. Section 4 presents and discusses the identi�ed challenges, and Section 5
outlines related work. Finally, Section 6 gives a summary and an outlook on future work.

2. Background and Fundamentals

In general, there are di�erent quantum computationmodels such as the gate-based, measurement-
based, or quantum annealing computation model. These computation models in�uence the
implementation of quantum algorithms [15, 16]. In this work, we focus on the gate-based
quantum computation model using so-called quantum circuits to formulate computation steps
executed on a quantum computer. Within a quantum circuit, multiple qubits form a quantum
register and speci�c operations, so-called quantum gates, are applied to that register [5].
Quantum computers are often provided as services in the cloud and, hence, can be used on

demand by a broader audience [5]. These quantum cloud services typically o�er application
programming interfaces (APIs), enabling the execution of quantum circuits on real quantum
processing units (QPUs) or quantum simulators running on classical hardware. Since QPUs and
also simulators enable computing quantum circuits, we use the term “quantum computer” for
both. To facilitate and support the implementation of quantum circuits and their execution on
quantum computers, providers usually o�er software development kits (SDKs) [16, 17].

2

Since today’s quantum computers are limited, most algorithms already applicable during the
NISQ era are hybrid, i.e., they combine computations on quantum and classical computers [7].
Variational algorithms, such as the Variational Quantum Eigensolver (VQE) [18] for determining
eigenvalues, and the Quantum Approximation Optimization Algorithm (QAOA) [19] for approx-
imating the solution of an optimization problem, are common types of hybrid algorithms [20].
They use a parametrized quantum circuit (called ansatz) and optimize the measuring results
classically by varying the input parameters of the ansatz in each iteration [20].

3. Integration Scenarios

In this section, we present four scenarios that highlight various quantum-classical integration
aspects including di�erent kinds of interaction, composition of multiple quantum tasks in one
application, and implementation of hybrid algorithms with the control �ow encompassing clas-
sical and quantum tasks. The �rst two scenarios show how quantum and classical components
can be composed into simple sequences of actions. The last two scenarios show more complex
compositions in which the intended control �ow spans classical and quantum components and
has loops and conditions. To explain these more complex scenarios, we model them using the
Business Process Model and Notation (BPMN) [21], a well-known standard which provides a
visual notation for modeling business processes.

We implemented the scenarios using the cloud o�erings of two providers, namely Amazon
and IBM. The quantum components are implemented using Python, based on Qiskit and the
AWS Braket SDK, respectively. Additional libraries, such as Boto3 and Pennylane, were also
used to implement individual scenarios. Developed work�ow models are speci�ed and executed
using the Camunda work�ow system [22], which comprises a graphical modeling tool and
a state-of-the-art BPMN work�ow engine. The implemented scenarios are open-source and
available via GitHub [23].

Scenario 1: Random Data Points Generation

Due to their inherent quantum-mechanical properties, quantum computers facilitate generating
true random bits [24]. The �rst scenario shown in sub�gure (a) of Fig. 1 focuses on generating
random bit strings using quantum computers and post-processing the generated random bits
using classical computers. For this, the quantum task Generate Random Bit String needs to be
integrated with the classical task Assemble Points which interprets the random bits and stores
them in the desired format, e.g., as two-dimensional data points. Finally, another classical task
needs to persist the generated random data.

Scenario 2: Minimum Distance Classification

In the second scenario, data points are classi�ed w.r.t. a given set of classes using the distance
to their centroids. The distance is calculated on a quantum computer using a quantum distance
estimator [25, 26]. Sub�gure (b) in Figure 1 shows the classical task Load Centroids getting
invoked by a trigger-event in the Data Points Storage (e.g., an insert event). After the centroids
have been loaded, the distances between the data point and all centroids are computed using

3

Assemble
Points

Generate Rand.
Bit String

User Store
Points

(a) Scenario 1: Random Data Points Generation

trigger

Data
Points

Storage

Quantum
Distance
Estimator

Label with
Closest

Centroid

Find
Minimum
Distance

Load
Centroids

(b) Scenario 2: Minimum Distance Classi�cation
Quantum
Task

Classical
Task

Direct Call Event-driven Call

Figure 1: Example scenarios of sequential quantum and classical tasks integration

the quantum task called Quantum Distance Estimator. This quantum task normalizes the data
points, encodes them as angles on the unit circle [27], and uses a SWAP-Test [28] to check to
what extent the prepared quantum states di�er. The results are used by two classical tasks: the
�rst �nds the minimum distance and the second labels that information to the data point.

Scenario 3: K-Means Clustering

This scenario demonstrates the composition of the components from the �rst two scenarios to
implement the quantum k-means clustering algorithm [26]. Sub�gure (a) of Figure 2 depicts
the composition of required components as a BPMN Process. First, the execution is scheduled
by a timer start event which triggers the execution of this scenario once every 24 hours. The
�rst task called Generate Random Data Points is depicted as a BPMN Sub-Process: this task
generates random data points on a quantum computer, i.e., it executes the random data points
generator (see Scenario 1) as a �rst activity. These random data points are used as initial values
for the centroids, which will be recalculated later. After the data points and centroids are loaded
using a classical service task, the data points are assigned to the centroids using another sub-
process, which is the Minimum Distance Classi�cation of Scenario 2. The last task recalculates
the centroids using the mean of all data points assigned to them. The BPMN Exclusive Gateways
are used tomodel a loop in which the aforementioned three tasks are repeated until the algorithm
converges, i.e., by reaching a maximum number of iterations or if centroids no longer need to
be updated.

Yes

Load
Points and
Centroids

Recalculate
Centroids

Generate
Random

Data Points

Classify
Points

Converged?
No

Every
24h

(a) Scenario 3: K-Means Clustering

No Yes

Create
Hamiltonian

Execute
Ansatz

Adapt
Parameters

Evaluate
Cost

Converged?

(b) Scenario 4: Variational Quantum Eigensolver

Seq. Flow
Message
Start
Event

Timer
Start
Event

End
Event

Service
Task

Quantum
Circuit
Exec. Task

Sub-
Process

Exclusive
Gateway

Figure 2: Example scenarios of quantum and classical tasks integration using workflows

4

Scenario 4: Variational Quantum Eigensolver

This scenario represents a hybrid quantum-classical algorithm called Variational Quantum
Eigensolver (VQE) [18] for approximating the smallest eigenvalue of a hermitian matrix. Sub-
�gure (b) in Fig. 2 shows this scenario modeled in BPMN. Based on the input matrix, the �rst
task creates a Hamiltonian (or a combination of several Pauli strings). Following the structure
of variational quantum algorithms [20], an ansatz is then executed on a quantum computer.
Afterwards, a cost function is evaluated, which is de�ned as the expectation value of the Hamil-
tonian, i.e., the sum of the expectation values of the Pauli strings. The work�ow minimizes this
cost function by “tweaking” the parameters of the ansatz. Due to the variational principle, the
expectation value is always greater or equal to the smallest eigenvalue, thus, the expectation
value gets minimized in order to approximate the minimum eigenvalue. The algorithm stops if
the changes of the expectation value are below a certain threshold.

4. Engineering Challenges of hQApps in the Cloud

The design and implementation of hQApps require expertise from di�erent domains, such as
quantum computing, cloud computing, work�ow technology, etc. In this section, we discuss
various challenges from di�erent domains we encountered when designing and implementing
the scenarios introduced in Section 3.

Challenge 1: Identify Quantum-Classical Split

One of the �rst encountered challenges is the task of splitting a problem into classical and
quantum components [29, 12]. This challenge of quantum-classical split is twofold. Firstly, it is
necessary to identify which problem parts are suitable for computation on quantum comput-
ers [3]. This requires identifying suitable quantum algorithms and assessing relevant functional
and non-functional characteristics, e.g., their performance in the context of a given problem [30].
Here, one needs also to decide which computation model will be used to implement the quantum
parts [12]. In particular, this concerns the decision between universal computation models, such
as gate-based and measurement-based quantum computing, or restricted computation models,
such as quantum annealing [16]. Since quantum circuits are wrapped by classical source code
handling the execution, further classical logic can be combined into this wrapper. Thus, the
second aspect is to decide which classical logic should be implemented tightly coupled with the
quantum circuit. For example, the loading of the centroids in Scenario 2 can be combined with
the execution of the quantum distance estimator.

Key Observations and Open Research: Turning requirements into an architecture design
is di�cult for classical applications as well as for quantum applications. One way to facilitate
this process is to model hQApps using work�ow languages as they provide a good overview of
the intended control �ow w.r.t. involved activities, which can serve as a basis for identifying
better component boundaries, e.g., based on the observed data locality and interaction patterns.
Although a separation of classical and quantum problem parts into separate components makes
the implementation more concise and maintainable, strict separation is not always preferable
due to performance reasons. For example, variational algorithms, as described in Scenario 4,

5

comprise quantum and classical computations, and splitting them introduces an additional
communication overhead. Thus, it can be preferable in some cases to combine quantum
and classical parts into one component. We also used this strategy in our implementation
of Scenario 4. A “good” quantum-classic split via properly-de�ned component boundaries
improves maintainability and reusablility of application components while at the same time
ensures e�cient execution. However, �nding a suitable quantum-classical split is highly problem-
dependent and requires further research.

Challenge 2: Identify a Suitable Quantum Service Type

Another challenge encountered when designing hQApps is to choose a cloud service type suiting
the de�ned application requirements. For instance, one important factor to consider is whether
the selected quantum cloud service supports the required interaction type, e.g., implementation
of direct API calls.

Key Observations and Open Research: In general, available quantum service o�erings
fall into one of the following four categories:

(i) Circuit Composers o�er a combination of graphical and textual quantum circuit editors.
Examples are the IBMQ Composer and the QI Editor in Quantum Inspire [31]

(ii) Jupyter Notebook Services enable the development and direct execution of quantum com-
ponents in a document-style manner where source code is accompanied by documentation
and console instructions. IBM Quantum Lab and AWS Braket Notebooks are o�erings
which fall into this category.

(iii) Quantum Computation as a Service (QCaaS) o�erings receive computation requests over
an API. Thus, they require to construct a quantum circuit �rst to be sent to this interface.

(iv) Hybrid Cloud Services (e.g., [32]) allow transmitting hybrid components consisting of both
classical and quantum parts which are managed and executed by service providers.

Although Circuit Composers allow to create quantum circuits which are stored in the cloud and
can be executed multiple times on various quantum computers, they do not allow external
input variables to be used and cannot establish a connection to other services. Currently,
Jupyter Notebook Services do not provide endpoints for implementations, so they cannot be
triggered externally. In the future, however, providers could add such functionality, making
Jupyter Notebook Services a su�cient option for hosting invocable quantum components. The
structure of current QCaaS o�erings implies hosting on classical cloud components which
connect to QCaaS APIs to perform quantum computations. First, some classical component
creates a quantum circuit, which is then sent to the API of the QCaaS where it gets executed
on a quantum computer. The response is interpreted by the classical component that further
de�nes all external interfaces needed for invocation. Hybrid Cloud Services enable to create
hybrid quantum components hosted in the cloud that can be invoked over an HTTP endpoint.

Some of our scenarios also use event-driven interaction between components. However, none
of the currently available quantum cloud services we are aware of allow this type of interaction.

6

Thus, suitable o�erings from the classical cloud must be selected. For example, the quantum
component can be implemented as a function hosted on a FaaS o�ering, such as AWS Lambda
or IBM Cloud Functions, establishing a connection to a QCaaS o�ering. The function can be
bound to speci�c events so that it gets executed when they occur.

Challenge 3: Decide on Quantum Computer Utilization Strategy

Quantum computers are often shared by multiple users, with quantum circuits typically being
queued before execution. Compared to the actual computation time on the quantum computer,
this can result in a rather long total execution duration. Therefore, before implementing the
hQApp it is important to choose the desired quantum computer utilization strategy.

Key Observations and Open Research: Since the execution of hQApps depends on the
selected quantum computer, a suitable utilization strategy must be selected. In multi-circuit
scenarios, e.g., it has to be decided whether to use several quantum computers or execute all
quantum circuits on the same one. Furthermore, it must be decided how to select those quantum
computers. Since quantum computers provide varying capabilities, such as qubit count and
computation accuracy, one strategy is to �nd all suitable instances for a given problem [30] and
use the instance with the fewest amount of requests waiting in the queue. Since the utilization
of available quantum computers can be high, many quantum-speci�c services o�er to book
time-slots for exclusive access to certain quantum computers. Since it incurs additional costs, it
is especially useful for scenarios that perform many quantum computations such as Scenario 3
and Scenario 4. Booking a time slot for single circuit executions rises the question of how to
collect multiple execution requests to �t in a time slot, i.e., how to estimate execution times for
quantum components.

Additionally, it must be considered whether quantum circuits should be executed sequentially
or in parallel. For example, in Scenario 2, the distance estimations of multiple data points
are independent from each other and can be computed in parallel. In contrast, Scenario 4
requires iterative execution of the quantum circuits. When parallel computing is possible, bulk
processing features should be used to transmit multiple quantum circuits simultaneously rather
than sequentially. To avoid sending each circuit individually to the interface, hybrid cloud
services can be used. These upcoming services combine the execution of quantum computations
with classical computations and allow iterative execution of multiple circuits behind the queue.
Thus, they are especially useful for iterative scenarios such as Scenario 3 and 4.

To determine an appropriate quantum computer utilization strategy, it is important to �rst
analyze the overall structure of the hQApp. Although the analysis is currently a manual task, it
could be automated in certain ways. For example, the iterative nature of applications, such as
in Scenario 3 and Scenario 4 can be identi�ed by detecting loops in the work�ow model [8].
Additional actions to reserve time-slots for exclusive access can then be integrated by extending
the work�ow. However, availability of quantum computers might not be assured anytime and
time slots might be postponed. Another approach could merge existing implementations of
quantum and classical tasks as hybrid components, e.g., using the Qiskit Runtime. However, an
automated realization may pose further challenges, e.g., if quantum and classical components
are implemented in di�erent programming languages.

7

Challenge 4: Select Components Integration Style

The individual components need to be integrated to form the application system, raising the
question of how to integrate quantum components with classical components.

Key Observations and Open Research: In general, di�erent approaches can be used to
integrate di�erent components. For example, tightly-coupled components can interact with
each other by means of hard-coded endpoint calls. However, tight coupling con�icts with the
separation of concerns principle, hence, hindering the maintainability. To avoid this, more
loosely-coupled approaches can be used, e.g., required components can be composed using the
work�ow technology [33]. Quantum-speci�c extensions of conventional work�ow technologies
have also been proposed [34]. Another option is to use messaging-based integration, e.g., to
decouple the preparation of quantum circuits from the processing of the results. Here, the QCaaS
o�erings are used as an external component integrated using the Service Activator Pattern [35].
Fig. 3 shows this pattern – quantum circuits are no longer sent directly to the QCaaS, but to
a Request Queue that the Service Activator listens to. The Service Activator, e.g., hosted on a
PaaS o�ering, communicates with the QCaaS API to submit the quantum circuits and poll for
computation results. It then forwards the results to the Response Queue.

Challenge 5: Implement for Specific Hardware

When implementing hQApps, one issue that must be taken into account is that the choice
for certain quantum hardware (one quantum service o�ering might provide several quantum
hardware options) in�uences the actual implementation.

Key Observations and Open Research: In contrast to classical cloud service o�erings,
quantum cloud services do not incorporate virtualization techniques; instead users must manu-
ally select quantum computers and align their implementations with them. Selecting the instance
with the least number of jobs in the queue, as mentioned in Challenge 3, is one approach to
avoid manual selection. Since it does not incorporate information about the number of required
qubits, it might pick an unsuitable quantum computer to execute a certain quantum circuit.
Thus, the approach is useful for circuits requiring only few qubits, because in these cases “small”
quantum computers can also be chosen. Another possible solution is to make hardware selection
con�gurable within the application, e.g., by implementing the Content Enricher pattern [35].
Figure 4 shows an example implementation of the Content Enricher, in which the application
still creates quantum circuits, however, without referencing concrete quantum computers. This

QCaaSAP
I

Measure
Results

Quantum
Circuit

Service
Activator

put

trigger

pullput

Request Queue
execute

respone

Response Queue

Figure 3: Message-based Integration of QCaaS
Using a Service Activator [35]

AP
I

Quantum
Circuit

Content
Enricher

Knowledge Base

Quantum
Circuit

QCaaS
QPUs

C

A
B
C

Figure 4: Configurable Hardware Selection Using
the Content Enricher Pattern [35]

8

information is injected into the quantum circuits as they pass through. However, multiple
hardware-speci�c criteria [36] must be considered to enable such con�gurable behavior, e.g.,
the connectivity of qubits and the average error rates of di�erent operations. Additionally, it
is important to check whether the given quantum circuit can be executed successfully on the
selected quantum computer, e.g., using existing tools [30] that help automating the selection.

In the NISQ-era, however, the selection of suitable quantum computers for running an existing
implementation is only one aspect. In addition, the implementation itself must be aware of
the hardware limitations in the NISQ era, e.g., to avoid creating too large quantum circuits. As
hardware continues to improve, the question arises of how to implement applications that are
as �exible as possible to grow with progress.

5. Related Work

There are already various publications that discuss challenges of developing hQApps. Ra-
haman et al. [37], e.g., present di�erent problems of QCaaS o�erings in general and focus
on reliability and security issues. Leymann and Barzen [7] point out several pitfalls for the
successful and e�cient implementation of quantum algorithms in the NISQ era: algorithms are
often presented without considering crucial steps, such as state preparation, oracle expansion,
connectivity, etc. Rojo et al. [38] present an empirical study describing the tribulations of
quantum-classical microservice systems. However, they focus on technical properties, such as
the number of qubits and response times, of current quantum cloud services. Hevia Olivera [39]
presents requirements for quantum service providers, discussing several challenges related
to technical limitations and the diversity of current o�erings. In previous work [40, 12] we
present the development lifecycle of quantum applications showing that expertise from di�erent
areas is required. While the aforementioned works discuss challenges only related to technical
conditions or the pure implementation of quantum algorithms, in this work we explore the
engineering challenges faced by interdisciplinary teams of hQApps developers.

6. Summary and Future Work

In this work, we analyzed the challenges of engineering hQApps in the cloud by conducting an
exploratory study comprising four di�erent integration scenarios. We have shown that it is
important to understand how to split a problem into classical and quantum components. On the
one hand, �ne-granular decomposition leads to better maintainability and reusability. On the
other hand, it is crucial to minimize communication overhead between quantum and classical
computations in some scenarios, e.g., hybrid algorithms. One strategy, thus, can be to start
with a monolith-�rst implementation and decompose it into classical and quantum components,
paying attention to avoid unnecessary communication overhead. Another important step is to
decide what type of quantum service to use and how to utilize available quantum computers.
This may involve booking exclusive access or result in a quantum computer being shared
among multiple applications. It is also important to decide how individual components should
be integrated, as the integration style in�uences the design and implementation of a hQApp
and its components. There are several options for this, such as message-based integration

9

or orchestration based on work�ow technologies. In contrast to tightly-coupled and hard-
coded integration, the aforementioned approaches are more robust to changes and o�er better
reusability, but also require additional expertise, e.g., regarding the use of quantum-speci�c cloud
services. Quantum-speci�c cloud services, unlike classical cloud services, do not incorporate
any virtualization techniques. Hence, implementations of hQApps are hardware-speci�c and
cannot run on arbitrary quantum computers.
In future work, we aim to improve tooling support for the design of quantum applications.

Thereby, we plan to extend previous work [16] to also incorporate decision support and guide
developers in their decision for speci�c tools and services. Furthermore, we also want to evaluate
the feasibility of di�erent virtualization approaches for quantum hardware.

Acknowledgments

This work was partially funded by the BMWi projects PlanQK (01MK20005N), the project
SEQUOIA funded by the Baden-Württem-berg Ministry of Economy, Labour and Housing, and
the DFG’s Excellence Initiative project SimTech (EXC 2075 - 390740016).

References

[1] National Academies of Sciences, Engineering, and Medicine, Quantum Computing:
Progress and Prospects, National Academies Press, 2019.

[2] T. Gabor, et al., The Holy Grail of Quantum Arti�cial Intelligence: Major Challenges in
Accelerating the Machine Learning Pipeline, 2020. arXiv:2004.14035.

[3] J. Barzen, F. Leymann, M. Falkenthal, D. Vietz, B. Weder, K. Wild, Relevance of Near-Term
Quantum Computing in the Cloud: A Humanities Perspective, Cloud Computing and
Services Science 1399 (2021) 25–58.

[4] A. Acín, et al., The quantum technologies roadmap: a european community view, New
Journal of Physics 20 (2018) 080201.

[5] F. Leymann, J. Barzen, M. Falkenthal, D. Vietz, B. Weder, K. Wild, Quantum in the
Cloud: Application Potentials and Research Opportunities, in: Proceedings of the 10th

International Conference on Cloud Computing and Services Science (CLOSER 2020),
SciTePress, 2020, pp. 9–24.

[6] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2 (2018) 79.
[7] F. Leymann, J. Barzen, The bitter truth about gate-based quantum algorithms in the NISQ

era, Quantum Science and Technology 5 (2020) 044007.
[8] F. Leymann, J. Barzen, Hybrid Quantum Applications Need Two Orchestrations in Super-

position: A Software Architecture Perspective, 2021. arXiv:2103.04320.
[9] IBM, IBM Quantum, 2021. URL: https://quantum-computing.ibm.com.
[10] Amazon.com, Inc, AWS Braket, 2021. URL: https://aws.amazon.com/braket.
[11] Microsoft, Azure Quantum, 2021. URL: https://azure.microsoft.com/services/quantum/.
[12] B. Weder, J. Barzen, F. Leymann, D. Vietz, Quantum Software Development Lifecycle, 2021.

arXiv:2106.09323.

10

http://arxiv.org/abs/2004.14035
http://arxiv.org/abs/2103.04320
https://quantum-computing.ibm.com
https://aws.amazon.com/braket
https://azure.microsoft.com/services/quantum/
http://arxiv.org/abs/2106.09323

[13] J. Zhao, Quantum Software Engineering: Landscapes and Horizons, 2020.
arXiv:2007.07047.

[14] C. A. Pérez-Delgado, H. G. Perez-Gonzalez, Towards a Quantum Software Modeling
Language, in: Proceedings of the IEEE/ACM 42nd International Conference on Soft-
ware Engineering Workshops, ICSEW’20, Association for Computing Machinery, 2020, p.
442–444.

[15] J. A. Miszczak, Models of quantum computation and quantum programming languages,
Bulletin of the Polish Academy of Sciences: Technical Sciences 59 (2011) 305–324.

[16] D. Vietz, J. Barzen, F. Leymann, K. Wild, On Decision Support for Quantum Application
Developers: Categorization, Comparison, and Analysis of Existing Technologies, in:
Computational Science – ICCS 2021, Springer International Publishing, 2021, pp. 127–141.

[17] R. LaRose, Overview and Comparison of Gate Level Quantum Software Platforms, Quan-
tum 3 (2019) 130.

[18] A. Peruzzo, et al., A variational eigenvalue solver on a photonic quantum processor, Nature
Communications 5 (2014) 4213.

[19] E. Farhi, J. Goldstone, S. Gutmann, A Quantum Approximate Optimization Algorithm,
2014. arXiv:1411.4028.

[20] M. Weigold, J. Barzen, F. Leymann, D. Vietz, Patterns For Hybrid Quantum Algorithms, in:
Proceedings of the 15th Symposium and Summer School on Service-Oriented Computing
(SummerSOC), Springer International Publishing, 2021, pp. 34–51.

[21] OMG, Business Process Model and Notation (BPMN) Version 2.0, Object Management
Group (OMG), 2011.

[22] Camunda, Camunda BPMN Work�ow System, 2021. URL: https://camunda.com.
[23] University of Stuttgart, Practical aspects quantum engineering challenges, 2021. URL:

https://github.com/vietzd/qc-cloud-challenges.
[24] M. Herrero-Collantes, J. C. Garcia-Escartin, Quantum random number generators, Reviews

of Modern Physics 89 (2017) 015004.
[25] M. Schuld, M. Fingerhuth, F. Petruccione, Implementing a distance-based classi�er with a

quantum interference circuit, EPL (Europhysics Letters) 119 (2017) 60002.
[26] S. U. Khan, A. J. Awan, G. Vall-Llosera, K-Means Clustering on Noisy Intermediate Scale

Quantum Computers, 2019. arXiv:1909.12183.
[27] M. Weigold, J. Barzen, M. Salm, F. Leymann, Data Encoding Patterns For Quantum

Computing, in: Proceedings of the 27th Conference on Pattern Languages of Programs,
The Hillside Group, 2021. Accepted for publication.

[28] M.-S. Kang, J. Heo, S.-G. Choi, S. Moon, S.-W. Han, Implementation of SWAP test for
two unknown states in photons via cross-Kerr nonlinearities under decoherence e�ect,
Scienti�c Reports 9 (2019) 6167.

[29] R. Pérez-Castillo, M. A. Serrano, M. Piattini, Software modernization to embrace quantum
technology, Advances in Engineering Software 151 (2021) 102933.

[30] M. Salm, J. Barzen, U. Breitenbücher, F. Leymann, B. Weder, K. Wild, The NISQ Ana-
lyzer: Automating the Selection of Quantum Computers for Quantum Algorithms, in:
Proceedings of the 14th Symposium and Summer School on Service-Oriented Computing
(SummerSOC 2020), Springer International Publishing, 2020, pp. 66–85.

[31] T. Last, et al., Quantum Inspire: QuTech’s platform for co-development and collaboration in

11

http://arxiv.org/abs/2007.07047
http://arxiv.org/abs/1411.4028
https://camunda.com
https://github.com/vietzd/qc-cloud-challenges
http://arxiv.org/abs/1909.12183

quantum computing, in: Novel Patterning Technologies for Semiconductors, MEMS/NEMS
and MOEMS 2020, volume 11324, International Society for Optics and Photonics, SPIE,
2020, pp. 49 – 59.

[32] IBM, Qiskit Runtime, 2021. URL: https://github.com/Qiskit-Partners/qiskit-runtime.
[33] F. Leymann, D. Roller, Production Work�ow: Concepts and Techniques, Prentice Hall PTR,

2000.
[34] B. Weder, U. Breitenbücher, F. Leymann, K. Wild, Integrating Quantum Computing into

Work�ow Modeling and Execution, in: Proc. of the 13th IEEE/ACM Int. Conf. on Utility
and Cloud Computing (UCC 2020), IEEE Computer Society, 2020, pp. 279–291.

[35] G. Hohpe, B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions, Addison-Wesley, 2004.

[36] M. Salm, J. Barzen, F. Leymann, B. Weder, About a Criterion of Successfully Executing
a Circuit in the NISQ Era: What wd ⌧ 1/✏e� Really Means, in: Proceedings of the 1st
ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering
Quantum Software (APEQS 2020), ACM, 2020, pp. 10–13.

[37] M. Rahaman, M. M. Islam, A Review on Progress and Problems of Quantum Computing as
a Service (QCaaS) in the Perspective of Cloud Computing, Global Journal of Computer
Science and Technology 15 (2015).

[38] J. Rojo, D. Valencia, J. Berrocal, E. Moguel, J. García-Alonso, J. M. M. Rodriguez, Trials
and Tribulations of Developing Hybrid Quantum-Classical Microservices Systems, 2021.
arXiv:2105.04421.

[39] J. L. Hevia Olivera, Requirements for Quantum Software Platforms, in: 1st Quantum
Software Engineering and Technology Workshop, 2020, pp. 20–26.

[40] B. Weder, J. Barzen, F. Leymann, M. Salm, D. Vietz, The Quantum Software Lifecycle,
in: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and
Paradigms for Engineering Quantum Software (APEQS 2020), ACM, 2020, pp. 2–9.

12

https://github.com/Qiskit-Partners/qiskit-runtime
http://arxiv.org/abs/2105.04421

	1 Introduction
	2 Background and Fundamentals
	3 Integration Scenarios
	4 Engineering Challenges of hQApps in the Cloud
	5 Related Work
	6 Summary and Future Work

