b b H Institute of Architecture of Application Systems

The Quantum Software Lifecycle

Benjamin Weder, Johanna Barzen, Frank Leymann,
Marie Salm, Daniel Vietz

Institute of Architecture of Application Systems,
University of Stuttgart, Germany
{weder, barzen, leymann, salm, vietz}@iaas.uni-stuttgart.de

Benjamin Weder, Johanna Barzen, Frank Leymann, Marie Salm, and Daniel Vietz.
2020. The Quantum Software Lifecycle. In Proceedings of the 1st ACM SIGSOFT
International Workshop on Architectures and Paradigms for Engineering Quantum
Software (APEQS 2020). Association for Computing Machinery, New York, NY, USA,
2-9. DOI: https://doi.org/10.1145/3412451.3428497

BIBTEX
@inproceedings{Weder2020 QuantumSoftwarelLifecycle,
author = {Weder, Benjamin; Barzen, Johanna; Leymann, Frank;
Salm, Marie; Vietz, Daniel},
title = {{The Quantum Software Lifecycle}},
booktitle = {Proceedings of the 1st ACM SIGSOFT International
Workshop on Architectures and Paradigms for
Engineering Quantum Software (APEQS 2020)},
publisher = {ACM},
year = 2020,
month = nov,
pages = {2--9},
doi = {10.1145/3412451.3428497}
}
© ACM 2020

This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version is available at
ACM: http://doi.acm.org/10.1145/3412451.3428497

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Universitat Stuttgart

Germany

http://doi.acm.org/10.1145/3412451.3428497

The Quantum Software Lifecycle

Benjamin Weder
weder@iaas.uni-stuttgart.de
Institute of Architecture of
Application Systems,
University of Stuttgart, Germany

Marie Salm
salm@iaas.uni-stuttgart.de
Institute of Architecture of

Application Systems,
University of Stuttgart, Germany

ABSTRACT

Quantum computing is an emerging paradigm that enables to solve
a variety of problems more efficiently than it is possible on classical
computers. As the first quantum computers are available, quantum
algorithms can be implemented and executed on real quantum hard-
ware. However, the capabilities of today’s quantum computers are
very limited and quantum computations are always disturbed by
some error. Thus, further research is needed to develop or improve
quantum algorithms, quantum computers, or required software
tooling support. Due to the interdisciplinary nature of quantum
computing, a common understanding of how to develop and ex-
ecute a quantum software application is needed. However, there
is currently no methodology or lifecycle comprising all relevant
phases that can occur during the development and execution pro-
cess. Hence, in this paper, we introduce the quantum software
lifecycle consisting of ten phases a gate-based quantum software
application should go through. We analyze the purpose of each
phase, the available methods and tools that can be applied, and the
open problems or research questions. Therefore, the lifecycle can
be used as a baseline for discussions and future research.

CCS CONCEPTS

« Computer systems organization — Quantum computing; -
Software and its engineering — Software creation and man-
agement; Designing software; Software development meth-
ods; Software post-development issues.

KEYWORDS

Quantum Software Development, Quantum Computing, Quantum
Applications, NISQ, Software Engineering, Software Lifecycle

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

APEQS °20, November 13, 2020, Virtual, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8100-0/20/11...$15.00
https://doi.org/10.1145/3412451.3428497

Johanna Barzen
barzen@iaas.uni-stuttgart.de
Institute of Architecture of
Application Systems,
University of Stuttgart, Germany

Frank Leymann
leymann@iaas.uni-stuttgart.de
Institute of Architecture of
Application Systems,
University of Stuttgart, Germany

Daniel Vietz
vietz@iaas.uni-stuttgart.de
Institute of Architecture of

Application Systems,
University of Stuttgart, Germany

ACM Reference Format:

Benjamin Weder, Johanna Barzen, Frank Leymann, Marie Salm, and Daniel
Vietz. 2020. The Quantum Software Lifecycle. In Proceedings of the 1st ACM
SIGSOFT International Workshop on Architectures and Paradigms for Engi-
neering Quantum Software (APEQS °20), November 13, 2020, Virtual, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3412451.3428497

1 INTRODUCTION

Quantum computing is a promising research area, which may en-
able to solve a variety of problems more efficiently than it is possible
on classical computers [55, 59]. Different quantum algorithms, such
as Shor’s algorithm [65] for factorizing numbers, Grover’s algo-
rithm [23] for unstructured search, or the HHL algorithm [25] for
solving linear equations, provide a speedup over the best known
classical algorithms for these problems. Furthermore, different ven-
dors, such as IBM or Rigetti, developed quantum computers in
recent years, and offer access to them, e.g., via the cloud [39, 44].

However, today’s quantum computers are error-prone and have
only limited capabilities [42, 59]. One restriction is the small number
of qubits that they provide [39]. Hence, the size of the input data that
can be represented within the quantum computer is limited [55].
Another problem is the noise that affects calculations on quantum
computers [35, 59]. For example, due to unintended interactions
between the qubits and their environment, their state is only stable
for a certain amount of time, which is referred to as decoherence [44,
55]. Therefore, today’s quantum computers are often also called
Noisy Intermediate-Scale Quantum (NISQ) [59] computers.

Thus, a lot of research has to be done to design new or improve
existing quantum algorithms, to increase the capabilities of avail-
able quantum computers, and to develop required software tooling
support, such as suitable modeling tools, quantum compilers, or a
platform to share and discuss developed quantum algorithms and
their implementations [43]. Hence, quantum computing is a very
interdisciplinary research area, which requires the knowledge of
experts from many different fields, such as physics, mathematics,
or computer science [55]. To ensure the successful cooperation
between the various experts, a common understanding of how a
typical quantum software application is developed, executed, and
possibly adapted afterward is required. Thereby, a quantum soft-
ware application comprises all required software artifacts to execute
a quantum algorithm. This means, besides the software artifacts
implementing the quantum algorithm, all related classical code,

https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497

APEQS ’20, November 13, 2020, Virtual, USA

e.g., to initialize the quantum algorithm with the input data. How-
ever, there is currently no methodology or lifecycle comprising all
relevant phases a quantum software application should go through.

Thus, the goal of this paper is to introduce the quantum software
lifecycle consisting of ten phases that should be covered during
the development and execution of quantum software applications.
Thereby, the purpose of each phase and the available tooling support
that can be used to conduct them are discussed. Hence, the lifecycle
enables a unified view of the development and usage process of
quantum applications. Furthermore, it shows the different phases in
which future research has to be conducted to improve the processes.

There exists a variety of different quantum computing models,
e.g., gate-based [49], measurement-based [31], and adiabatic quan-
tum computing [2]. The diverse models represent quantum algo-
rithms in various ways. However, it can be shown that the different
models are formally equivalent [2, 31]. In this paper, we restrict
our considerations to the gate-based quantum computing model, as
many available quantum computers rely on it [39]. However, some
phases of the quantum software lifecycle also apply to the other
quantum computing models or need only small adjustments.

The remainder of this paper is structured as follows: Section 2 de-
scribes fundamentals and the problem statement that underlies our
work. In Section 3, the quantum software lifecycle and its different
phases are presented. Then, Section 4 describes the assumptions on
which the lifecycle is based and the limitations of our work. The
related work is discussed in Section 5, and we conclude in Section 6.

2 FUNDAMENTALS & PROBLEM STATEMENT

In this section, we introduce fundamentals about noisy intermediate-
scale quantum computers and motivate why they pose special chal-
lenges for the development of new quantum software applications.
Then, we analyze how hybrid algorithms can help to circumvent
these problems and why the selection of suitable quantum hardware
is important. Furthermore, fundamentals about provenance and
how it can be used to improve applications are presented. Finally,
the purpose of software lifecycles in the research area of software
engineering and the problem statement of our work are described.

2.1 Noisy Intermediate-Scale Quantum

The term Noisy Intermediate-Scale Quantum (NISQ) was coined by
John Preskill [59] to illustrate the capabilities of today’s quantum
computers and to describe the current state of quantum comput-
ing research. Thereby, “noisy” means that the gates and qubits of
existing quantum computers are affected by noise from various
sources, such as measurement and gate errors or qubit decoher-
ence due to unintended interactions between the qubits and their
environment [35, 72]. The noise leads to severe restrictions on the
capabilities of today’s quantum computers, as it limits the num-
ber of gates that can be successfully executed consecutively on a
qubit before the result gets too inaccurate to be usable [55]. This
maximum number of gates is referred to as the maximum circuit
depth. Therefore, quantum algorithms that require a larger circuit
depth cannot be executed. Due to this problem, different error cor-
rection codes [36, 38, 60] were proposed for quantum computing
to correct occurring errors, and hence, to extend the maximum

Benjamin Weder, Johanna Barzen, Frank Leymann, Marie Salm, and Daniel Vietz

circuit depth. The application of such codes implies a high over-
head, which means additional qubits and gates have to be added
to the quantum circuit [59]. However, this is impractical for NISQ
machines, as they are also limited in the number of available qubits,
which is summarized by the term “intermediate-scale”. Thereby,
Preskill defines a number between 50 and a few hundred qubits as
intermediate-scale. Therefore, quantum computers in the NISQ era
are only capable to execute quantum circuits comprising a limited
number of qubits and gates. This leads to challenges when develop-
ing and implementing quantum algorithms or selecting a suitable
quantum computer for the execution of a given quantum algorithm,
which will be covered in the following subsections in more detail.

2.2 Hybrid Algorithms

The hardware limitations of NISQ machines lead to the problem that
existing quantum algorithms that provide an exponential speed-
up compared to their best known classical counterparts can often
not be executed on practically useful problems [59]. For example,
one difficulty is to initialize the register of the quantum computer
with the input data for the problem that needs to be solved, as the
number of provided qubits can be too small to encode the data [42].
To reduce the problems of limited amounts of qubits and the re-
stricted circuit depth, algorithms can be split into multiple parts and
distributed over classical and quantum hardware [41]. Algorithms
utilizing this approach are often referred to as quantum-classical,
variational, or hybrid algorithms [48]. Thereby, the idea is to perform
pre- or post-processing for a quantum computation on a classical
computer [65]. In contrast, the part of the computation that can only
be done inefficiently on classical computers, and for which quantum
computers can provide an exponential speed-up, are executed on a
quantum computer. Examples for hybrid algorithms are Shor’s [65]
and Simon’s [68] algorithms, which use classical post-processing
after the quantum computation. Another approach is to perform
multiple iterations of quantum and classical computations. Thereby,
the input for the quantum computation is improved in each itera-
tion until the result reaches the required accuracy. Examples using
this approach are the variational quantum eigensolver (VQE) [32] or
the quantum approximate optimization algorithm (QAOA) [18, 19].
Therefore, hybrid algorithms can be used to solve problems that
are not solvable on today’s NISQ machines. That means, they can
be utilized to already profit from the advantages of quantum com-
puters, even in the current early research and development stage.
However, most splits into quantum and classical parts are problem-
specific and have to be done manually for each problem when
designing the algorithms [41]. Hence, documented best practices
and patterns could help to develop new hybrid algorithms. Further,
an automated recommendation system could suggest which part of
a problem to execute on classical and which part on quantum hard-
ware, and therefore, ease the development of hybrid algorithms.

2.3 Quantum Hardware Selection

Quantum computers can be based on different physical qubit real-
izations, such as electron spins [58], trapped ions [56], or supercon-
ducting qubits [13], and the kind of realization leads to different
characteristics when executing quantum algorithms [46]. However,
even quantum computers with the same kind of physical realization

The Quantum Software Lifecycle

Number of
Qubits

Decoherence

Used Used
Gates Measurements
Quantum K
Execution

Qubit Quantum
i Computer Circuit
Connectivity Order
Quantum

Provenance \

Input
Data Data
Intermediate
Output Data
Data

Figure 1: Excerpt of relevant quantum provenance data
types

\ /

Qubit Quantum
Compiler

Mappings

Mappings

can differ significantly concerning properties, such as qubit count,
qubit connectivity, or fidelity of the implemented gates [73]. This
results in the fact that not all quantum computers can execute the
same set of quantum circuits successfully [44, 62]. Instead, some
circuits are better executed on one quantum computer and other
circuits on another quantum computer, if they, e.g., use divergent
kinds of gates, that are implemented with different fidelities in var-
ious quantum computers. Thus, the selection of suitable quantum
hardware is a difficult task and an important constituent when de-
veloping and executing quantum algorithms. In previous work [62],
we outlined an approach to analyze a given quantum circuit, extract
its important characteristics, and select suitable quantum hardware
based on these characteristics and the properties of the available
quantum computers. However, the hardware selection approach
needs to be integrated into the quantum software lifecycle.

2.4 Quantum Provenance

Provenance comprises any information that describes the manu-
facturing process of a product [16, 27]. Thereby, the product can
be, e.g., a piece of digital data or a physical object. By collecting
provenance data, the reproducibility of the production process can
be achieved [57]. Further, it can improve the understandability and
quality of the process, e.g., by analyzing past executions and improv-
ing the process based on the results [27]. Thus, to enable detailed
insights, it is important to capture all relevant information system-
atically. Provenance data is collected in different areas and with
diverse granularities, and hence, existing approaches can be classi-
fied into different kinds of provenance, such as data provenance [67]
or workflow provenance [5]. However, there are currently no prove-
nance approaches for quantum computing, that cover all steps from
the identification of relevant data, over the collection, to its analysis.
During the NISQ era, provenance approaches are especially im-
portant for quantum computing [42]. One reason is that the differ-
ent realizations of NISQ machines lead to diverse characteristics,
which have to be collected to enable the later analysis of quantum
computations. Additionally, the noise can lead to errors in the com-
putations, and the provenance data can be used to analyze their
origins. Furthermore, provenance data can also be used to select
suitable quantum hardware or to improve quantum circuits [62].

APEQS ’20, November 13, 2020, Virtual, USA

Hence, we introduce the research area of quantum provenance
and perform a first analysis, which kind of provenance data should
be collected for quantum computing. Thereby, four different cat-
egories of provenance data can be distinguished, as sketched in
Figure 1. First, information about the quantum computer executing
a quantum circuit, such as the number of provided qubits or decoher-
ence times, has to be gathered. Second, provenance data about the
quantum circuit, like used gates and measurements, are important.
Third, the input data, output data, and possible intermediate results
are required for a successful analysis of the execution. Such inter-
mediate results can, e.g., be retrieved after the different iterations
of a variational algorithm and may comprise the parameterization
used for the current iteration and the corresponding measurement
results. Finally, the quantum compiler [9, 28] is in charge of mapping
the abstract quantum circuit to the physical qubits and hardware
provided gates, and these mappings have a strong influence on the
execution time and error probability. Therefore, the details about
the mappings have to be collected too. However, further analysis
of important data types, as well as new approaches to collect and
analyze the data, are required. In this work, we incorporate the
quantum provenance approach into the quantum software lifecycle
and show in which phases provenance data can be gathered and
which phases can benefit from the collected provenance data.

2.5 Software Lifecycles

In the field of software engineering, software lifecycles are often
used to document the different phases and the order of their occur-
rence during the development and execution of certain software
artifacts [12, 37, 45, 53]. Thus, they provide a baseline for the dis-
cussion about methods and best practices that are applied in the
various phases and open problems that should be solved to improve
the development and execution process. Moreover, software life-
cycles can be used to educate developers or system administrators
by providing an overview of all phases and enable them to deepen
their understanding of the phases that are most relevant for them.

2.6 Problem Statement

As outlined in the previous sections, the development and execu-
tion of quantum software applications comprise a lot of complex
tasks, e.g., the selection of suitable quantum hardware. However,
there exists no methodology or lifecycle that covers all relevant
phases, which can be used as a baseline for further discussions
and research. Therefore, the resulting research question for this
work can be formulated as follows: “What phases should a typical
quantum software application go through, how do these phases relate
to each other, and what are open problems for the different phases?”

3 QUANTUM SOFTWARE LIFECYCLE

In this section, we present the quantum software lifecycle, which is
depicted in Figure 2. In the following subsections, we describe its
different phases, starting from the quantum-classical splitting phase,
which is the phase where the user typically enters the lifecycle with
the problem description. Then, the other phases are followed by
their usual execution order. Thereby, the purpose of each phase,
existing methods or tooling support that can be used to accomplish
it, and possible input and output data of the phase are discussed.

APEQS ’20, November 13, 2020, Virtual, USA

10. Result Analysis

Result verification
Return to user or next iteration for
improvement

On heterogeneous hardware

Multiple iterations for
variational algorithms

* Readout-error mitigation

8. Integration

Deployment of classical
software artifacts
Provisioning of quantum
resources

7. Compilation & Hardware-
dependent Optimization

.

Optimizations based on hardware
characteristics
Compilation to machine instructions

6. Readout-Error Mitigation Preparation

* Analysis of selected hardware
* Determination of the error model
* E.g. calculation of the correction matrix

Quantum Software
Lifecycle

Benjamin Weder, Johanna Barzen, Frank Leymann, Marie Salm, and Daniel Vietz

1. Quantum-Classical Splitting

* Problem separation in classical
and quantum parts

* E.g. manual by experts, decision support
based on patterns

2. Hardware-independent
Implementation

* Quantum circuit & classical
software artifacts

* Testing & verification of circuits

3. Quantum Circuit Enrichment

* Data preparation / initialization

* Oracle expansion

4. Hardware-independent
Optimization
* Removal of unnecessary gates
or qubits
* Based on cost functions (e.g. circuit
depth, accuracy)

5. Quantum Hardware Selection

* Analysis of quantum circuit
* Selection of suitable hardware
* E.g. based on metrics or benchmarks

Figure 2: Overview of the quantum software lifecycle

3.1 Quantum-Classical Splitting

The first phase of the quantum software lifecycle is entered by
the user with the new problem description or an updated problem
description based on the results of previous iterations. In this phase,
it is decided which parts of the problem to solve on a quantum
computer and which on a classical computer depending on the
requirements of the problem description. Due to the restricted ca-
pabilities of NISQ machines, most problems have to be solved in
a hybrid manner on quantum and classical hardware (see subsec-
tion 2.2) [48, 59]. The separation into quantum and classical parts
can be done by experts based on their knowledge and experience.
However, this is a difficult and error-prone task, which requires
immense knowledge from various fields, such as physics, mathe-
matics, and computer science [55]. Therefore, this process should
be supported by an automated recommender, which can, e.g., be
based on documented best practices or patterns [41]. Additionally,
the recommender can analyze the provenance data of passed exe-
cutions, e.g., by using machine learning techniques and utilize the
insights to improve future recommendations for this phase [3].

3.2 Hardware-Independent Implementation

In the second phase, the quantum circuits and the classical software
artifacts implementing the quantum and classical problem parts
resulting from the previous phase are created. Thereby, for the
implementation of the quantum circuits, a hardware-independent
high-level quantum programming language should be used to enable
a later vendor-agnostic hardware selection (see subsection 3.5) [24,

44, 74]. Otherwise, the selected quantum programming language
can reduce the set of compatible quantum computers already signif-
icantly. The quantum circuit should also be defined independently
of certain input data to enable its reusability for different instances
of the tackled problem. Therefore, the quantum circuit does not yet
contain the initialization steps, which are used to pass input data
to the quantum computer (see subsection 3.3) [41]. Hence, phases
one and two of the quantum software lifecycle can be skipped if
the same problem should be solved for different input data, and the
lifecycle can be (re)started in phase three. After the implementation,
the quantum circuits are verified by experts or using automated
approaches to prove their correct functionality [4, 50, 76]. Further,
the classical software artifacts should be tested accordingly [54].

3.3 Quantum Circuit Enrichment

During this phase, the quantum circuit is enriched with the required
details to solve a particular instance of the problem that is tackled
by the quantum software application. Thus, the quantum circuit is
initialized with the input data in a data preparation step [15, 41, 55].
This means, an initialization circuit is added to the beginning of the
original circuit, which prepares the required state in the quantum
register. This step is necessary as many quantum computers only
allow to initialize their register in the all-zero state, which means all
qubits set to zero [41]. Thereby, different schemes exist to encode
the input data into the initializing circuit, such as basis or amplitude
encoding [42, 51]. Another important step is the expansion of the
oracles that may be used in the quantum circuit. Many quantum

The Quantum Software Lifecycle

algorithms, such as Simon’s or Grover’s algorithm, utilize oracles,
e.g., to decide if an element in a collection is the searched one
or not [23, 52, 68]. However, these oracles depend on a specific
problem instance and have to be implemented using a collection of
gates during this phase of the quantum software lifecycle [33].

3.4 Hardware-Independent Optimization

After the quantum circuit enrichment, a hardware-independent op-
timization phase is performed for the resulting quantum circuits.
Hence, the optimizations of this phase are based on the hardware-
independent high-level quantum programming language [24, 74].
Thereby, an equivalent representation of the quantum circuit is
created, which is optimized with respect to a certain cost function,
such as the circuit size, circuit depth, or accuracy [74]. These opti-
mizations can be, for example, based on best practices, patterns and
anti-patterns, or collected provenance data about passed executions
including the performed optimizations and the resulting outcomes.

3.5 Quantum Hardware Selection

In the fifth phase, suitable quantum hardware for the execution of
the implemented and optimized quantum circuits has to be selected.
Thereby, a suitable quantum computer must be capable of executing
a quantum circuit with a given maximum error probability [62]. Ad-
ditionally, other optimization goals, such as the incurred monetary
costs for the execution or the set of vendors that are classified as
confidential by the user, have to be taken into account. For the quan-
tum hardware selection, the quantum circuits must be analyzed first,
and important characteristics, such as the width and depth of the
circuit, have to be retrieved (see subsection 2.3) [44, 73]. Afterward,
the hardware selection can be performed based on the obtained
circuit characteristics and the capabilities of the available quantum
computers. Thereby, the capabilities of quantum computers can be
assessed using different metrics, such as quantum volume [8] and
the total quantum factor [64]. Another approach is the usage of
benchmarks, which can, e.g., be based on the sampling of pseudo-
random quantum circuits [6] or error correction codes [36]. Further,
provenance information about past executions of quantum circuits
with similar characteristics on different quantum computers can be
utilized to improve the quantum hardware selection process.

3.6 Readout-Error Mitigation Preparation

Due to the noisy devices during the NISQ era, results of quantum
computations are always disturbed by some errors [59]. One reason
for errors are gates that can not be executed exactly, which can be
solved by error-correction codes if enough qubits are available [36,
38, 60]. However, also the measurements are noisy and can add
errors to the results, which are referred to as readout-errors [47].
Thus, it is important to apply readout-error mitigation to the results
to reduce the influence of these errors (see subsection 3.9) [47,
71]. Such readout-error mitigation approaches are based on so-
called unfolding techniques and depend on the error model of the
used quantum computer [11, 42, 47]. However, the error model
may change over time, e.g., due to a re-calibration of the quantum
computer [75]. Hence, the current error model has to be analyzed
periodically and stored as provenance data during this phase.

APEQS ’20, November 13, 2020, Virtual, USA

3.7 Compilation & Hardware-Dependent
Optimization

After the selection of suitable quantum hardware, the quantum
circuits have to be compiled to the machine instructions that are
required for the execution by the selected quantum computer [9,
74]. If the quantum circuits are implemented using a hardware-
independent high-level quantum programming language (see sub-
section 3.2), the compilation process is usually performed in two
separate steps [30, 44, 74]. First, (i) the quantum circuits are com-
piled to a quantum intermediate representation. This intermediate
representation can be, e.g., the quantum programming language of
an SDK, such as OpenQASM for Qiskit [29] or Quil for Forest [61],
that supports the execution on the selected quantum computer.
Then, (ii) the intermediate representation has to be compiled to the
machine instructions utilized by the selected quantum computer in
the second compilation step [9]. For this compilation, the hardware-
dependent compilers provided by the quantum hardware vendors,
such as IBM or Rigetti, can be used. Thereby, a hardware-dependent
optimization is performed during the compilation [28, 69]. This
means, the specific characteristics of the selected quantum com-
puter, such as the decoherence times of different qubits or the
qubit connectivity, are taken into account. For example, qubits on
which many two-qubit gates are executed in the quantum circuit
are mapped to physical qubits of the quantum computer that are
directly connected if possible to avoid additional SWAP gates. As
described in subsection 2.4, the collection of the qubit and gate map-
pings performed by the hardware-dependent compilers as prove-
nance data is important as they can have a significant impact on
the quantum circuit execution and the returned results [9, 28, 30].

3.8 Integration

In this phase, the compiled quantum circuits and classical software
artifacts have to be deployed and integrated to execute the quantum
software application in the next phase. Thereby, for the classical
software artifacts, suited deployment models should be created to au-
tomate their deployment [34, 79]. Such deployment models describe
all required components and information for the deployment of an
application in a reusable and maintainable manner [78]. Applica-
tions defined by deployment models can be automatically deployed
by a deployment system, such as Terraform [26] or Kubernetes [14].
Alternatively, the deployment of the classical software artifacts
can be done manually. However, this process is time-consuming,
error-prone, and requires immense technical knowledge [10]. For
the quantum circuits, the utilized SDKs of the quantum hardware
providers, such as Qiskit [29] or Forest [61], usually handle the
deployment to the supported quantum hardware [39, 70]. However,
the quantum computers that are currently available over the cloud,
for example, from IBM, are mostly job-based. Therefore, the deploy-
ment of quantum circuits equals their execution at the moment,
and hence, is done in the next phase of the quantum software life-
cycle. However, some providers enable reserving time slices for the
execution on their quantum computers, and therefore, this reser-
vation can be done during the integration phase [39]. Finally, the
classical software artifacts have to be configured to enable the invo-
cation of the quantum parts, for example, by updating the endpoint
information with the details about the selected quantum computer.

APEQS ’20, November 13, 2020, Virtual, USA

3.9 Execution

In the execution phase, the quantum software application is con-
ducted on the heterogeneous quantum and classical hardware. First,
pre-processing is performed if required, and then, the quantum
circuit is executed. After the classical post-processing, the results
are sent back to the user. Additional to algorithm-specific post-
processing, readout-error mitigation should be performed to reduce
the noise in the results [11, 42, 71]. For this, the hardware-dependent
error model that is analyzed and stored in the readout-error mitiga-
tion preparation phase can be used (see subsection 3.6). For example,
some approaches store the error model in the form of a correction
matrix and apply this matrix to the results [47]. However, the er-
ror model can not be determined exactly and different unfolding
techniques can lead to different qualities of mitigation for vari-
ous quantum circuits and quantum computers [11]. In the case
of a variational algorithm, multiple iterations between classical
and quantum processing may occur [48]. Thereby, these algorithms
enable to improve the result by computing new input data or chang-
ing the parametrization of some parameterized gates in each itera-
tion [17]. Hence, it is not always required to enter a new quantum
software lifecycle iteration to improve the result. During the execu-
tion, provenance data about the used hardware, their current state,
and possible intermediate results should be collected to enable the
later successful analysis of the execution and the final results.

3.10 Result Analysis

In the last phase of the quantum software lifecycle, the results of
the execution phase are analyzed. If the results can be automatically
validated, e.g., for the factorization of numbers by multiplying the
factors and verifying the equality to the input number, the next
iteration of the quantum software lifecycle can be entered if the
results are faulty. For other problems, the assessment has to be done
by the user to decide whether an additional iteration is required to
improve the results of the quantum software application or not.

4 DISCUSSION

In this section, we summarize the assumptions on which the quan-
tum software lifecycle is based and discuss the potential limitations
of our work. The quantum software lifecycle is intended as a base-
line for discussions and future research about the development and
execution of gate-based quantum software applications during the
NISQ era. Therefore, some of the lifecycle phases have to be adapted,
for example, to represent the particularities of the adiabatic [2] or
measurement-based [31] quantum computing model. Furthermore,
some of the presented phases are only required due to the limited
capabilities of NISQ machines [59]. For example, the readout-error
mitigation preparation phase, and the corresponding mitigation
step in the execution phase, are only needed as long as the influence
of readout-errors is significant. In the same way, the development
of an efficient quantum random access memory (QRAM) [22] can
change the data preparation step in the quantum circuit enrich-
ment phase. However, there is no efficient implementation of QRAM
available today [42]. Therefore, the quantum software lifecycle is
no fixed construct and may be refined with new advancements in
quantum computing research, especially when fully-fault tolerant
quantum computers are available after the NISQ era [59].

Benjamin Weder, Johanna Barzen, Frank Leymann, Marie Salm, and Daniel Vietz

5 RELATED WORK

Zhao [80] presents a comprehensive survey of the research area of
quantum software engineering. Thereby, he summarizes, e.g., avail-
able quantum programming languages, software tools, or methods
to test and maintain quantum software applications. Furthermore,
he also proposes a lifecycle consisting of five phases: (i) quan-
tum software requirements analysis, (ii) quantum software design,
(iii) quantum software implementation, (iv) quantum software test-
ing, and (v) quantum software maintenance. However, the proposed
lifecycle is very abstract and does not incorporate important phases
for quantum software applications during the NISQ era, e.g., the
data preparation, the oracle expansion, or the mitigation of readout-
errors. Thus, our introduced quantum software lifecycle is a refine-
ment of this lifecycle for applications during the NISQ era.

In different research areas of computer science, lifecycles are
described to document the diverse phases a software artifact goes
through [12, 37, 45, 53]. Kohlborn et al. [37] propose a business and
software service lifecycle, which covers the various phases of web
service development and execution from the requirement analy-
sis, over the implementation and operation, to the retirement of
the web service. Leymann et al. [45] and Cands et al. [12] intro-
duce workflow lifecycles, in which they define different phases a
workflow must pass through during development and runtime, as
well as their order and important input and output data. Further-
more, they integrate an exec log to their lifecycle, which collects
information during the various phases and which can be used for
later analysis of executions [1]. This log is often also referred to
as an audit log or audit trail [45, 77] and can be compared to the
provenance component used in different phases of the quantum
software lifecycle. Munassar and Govardhan [53] compare various
well-known software development lifecycles, such as the waterfall
model, the V-model, or the spiral model. Gabor et al. [20] introduce
an engineering process for machine learning, the so-called machine
learning pipeline, which summarizes the necessary tasks to suc-
cessfully apply machine learning in the lifecycle of self-adaptive
systems. Furthermore, they show the applicability of quantum ar-
tificial intelligence (QAI) by describing the tasks of the machine
learning pipeline that can be executed on a quantum computer [21].

In addition to software lifecycles, there are also data lifecycles
proposed in the literature. Such lifecycles describe the relevant
data processing steps from the data gathering, over its storage and
analysis, to the release of the collected data [7, 40].

Some existing research works present relevant phases that have
to be taken into account when developing and executing quantum
software applications without describing an entire lifecycle. Addi-
tionally, software tooling support for different phases is developed
in various works. In the following, we present research works cov-
ering one or multiple phases of the quantum software lifecycle, that
were not already discussed in the previous sections.

Svore et al. [74] and Héner et al. [24] propose a software design
flow for the compilation and optimization of quantum software
applications. Thereby, they introduce a two-level compilation pro-
cess, that first compiles the quantum algorithm definition from
a high-level quantum programming language to an intermediate
representation and in the second step to the quantum hardware
instructions for a certain quantum computer. During that process,

The Quantum Software Lifecycle

they first optimize the quantum algorithm hardware-independent
and afterward hardware-dependent while compiling to the machine
instructions as presented in the quantum software lifecycle.

Sim et al. [66] introduce algo2qpu, a framework to deploy hybrid
algorithms to cloud-based quantum computers or simulators. They
propose a workflow with steps that should be performed during the
development and execution of quantum software applications, such
as quantum algorithm selection, quantum circuit implementation,
compilation, and execution. However, they do, e.g., not consider the
splitting into quantum and classical parts using a recommendation
system or the hardware selection based on the implemented quan-
tum circuit and the properties of the available quantum computers.

Scherer et al. [63] propose an approach to analyze quantum
circuits and estimate their resource requirements by using a combi-
nation of manual analysis and automated estimates based on the
Quipper quantum programming language. Therefore, this approach
can be utilized in the quantum hardware selection phase.

6 CONCLUSION

Quantum computing is a promising research area that can enable
breakthroughs in different fields in the future. While there is lots of
ongoing research and effort to develop required tooling support or
new quantum algorithms, a holistic overview of the relevant phases,
a typical quantum software application goes through, is missing.
However, due to the interdisciplinary nature of quantum comput-
ing, a common understanding of the relevant phases is required as
a basis for discussions and future research. Additionally, this can
serve as a starting point to deepen the understanding of methods
and related tools that are used in the various phases. In this paper,
we presented the quantum software lifecycle, which consists of ten
identified phases that may occur during the development of quan-
tum software applications, their execution, and possible adaptations
based on the results of previous executions. Thereby, the goals of
the phases, available methods and tools for their accomplishment,
and possible input and output data are outlined. Furthermore, we
motivated the need for a comprehensive provenance approach that
covers the gathering of all relevant data and analyzed in which
phases provenance data can be collected or utilized.

In future work, we plan to develop new methods and tooling
support for the various phases of the quantum software lifecycle.
Thereby, we want to focus specifically on the deployment of hybrid
algorithms, the question of how to provide them as a service, and the
selection of suitable quantum hardware. Additionally, a provenance
system that collects all relevant data about quantum computations
and provides it for the different phases will be developed. Finally,
we plan to extend our pattern language on quantum computing [41]
with further patterns, which can, e.g., be used to decide what parts
of a problem to run on quantum or classical hardware.

ACKNOWLEDGEMENTS

The authors would like to thank the German Research Founda-
tion (DFG) for financial support of the project within the Cluster
of Excellence in Simulation Technology (EXC 2075 — 390740016) at
the University of Stuttgart. This work was partially funded by the
BMWi project PlanQK (01MK20005N).

APEQS ’20, November 13, 2020, Virtual, USA

REFERENCES

[1] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. 1998. Mining Process
Models from Workflow Logs. In International Conference on Extending Database
Technology. Springer, 467-483. https://doi.org/10.1007/BFb0101003

[2] Dorit Aharonov, Wim Van Dam, Julia Kempe, Zeph Landau, et al. 2008. Adiabatic

Quantum Computation Is Equivalent to Standard Quantum Computation. SIAM

review 50, 4 (2008), 755-787. https://doi.org/10.1137/080734479

Sunita B Aher and LMR] Lobo. 2013. Combination of machine learning algorithms

for recommendation of courses in E-Learning System based on historical data.

Knowledge-Based Systems 51 (2013), 1-14. https://doi.org/10.1016/j.knosys.2013.

04.015

[4] Matthew Amy. 2018. Towards Large-scale Functional Verification of Universal
Quantum Circuits. arXiv preprint arXiv:1805.06908 (2018). https://doi.org/10.
4204/EPTCS.287.1

[5] Manish Kumar Anand, Shawn Bowers, and Bertram Ludascher. 2010. Techniques
for Efficiently Querying Scientific Workflow Provenance Graphs. In EDBT, Vol. 10.
287-298. https://doi.org/10.1145/1739041.1739078

[6] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, et al. 2019. Quantum
supremacy using a programmable superconducting processor. Nature 574, 7779
(2019), 505-510. https://doi.org/10.1038/s41586-019-1666-5

[7] Alex Ball. 2012. Review of Data Management Lifecycle Models. University of Bath,
IDMRC.

[8] Lev SBishop, Sergey Bravyi, Andrew Cross, Jay M Gambetta, et al. 2017. Quantum
volume. Technical Report (2017).

[9] Jeffrey Booth Jr. 2012. Quantum Compiler Optimizations. arXiv preprint
arXiv:1206.3348 (2012).

[10] Uwe Breitenbiicher, Tobias Binz, Kalman Képes, Oliver Kopp, et al. 2014. Com-
bining Declarative and Imperative Cloud Application Provisioning based on
TOSCA. In International Conference on Cloud Engineering (IC2E). IEEE, 87-96.
https://doi.org/10.1109/IC2E.2014.56

[11] Lydia Brenner, Pim Verschuuren, Rahul Balasubramanian, Carsten Burgard, Vin-
cent Croft, Glen Cowan, and Wouter Verkerke. 2019. Comparison of unfolding
methods using RooFitUnfold. arXiv:1910.14654 (2019).

[12] José H Cands, M* Carmen Penadés, and José A Carsi. 1999. From Software Process
to Workflow Process: the Workflow Lifecycle. In Proceedings of the International
Process Technology Workshop, Grenoble, France.

[13] John Clarke and Frank K Wilhelm. 2008. Superconducting quantum bits. Nature
453, 7198 (2008), 1031. https://doi.org/10.1038/nature07128

[14] CNCF. 2020. Kubernetes. [online]. https://kubernetes.io/

[15] John A Cortese and Timothy M Braje. 2018. Loading Classical Data into a
Quantum Computer. arXiv preprint arXiv:1807.02500 (2018).

[16] Susan B Davidson and Juliana Freire. 2008. Provenance and Scientific Workflows:
Challenges and Opportunities. In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data. 1345-1350. https://doi.org/10.1145/
1376616.1376772

[17] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao. 2020. Expressive
power of parametrized quantum circuits. Phys. Rev. Research 2 (2020), 033125.
Issue 3. https://doi.org/10.1103/PhysRevResearch.2.033125

[18] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approxi-
mate Optimization Algorithm. arXiv preprint arXiv:1411.4028 (2014).

[19] Edward Farhi and Aram W Harrow. 2016. Quantum Supremacy through the
Quantum Approximate Optimization Algorithm. arXiv:1602.07674 (2016).

[20] Thomas Gabor, Andreas Sedlmeier, Thomy Phan, Fabian Ritz, Marie Kiermeier,

et al. 2020. The scenario coevolution paradigm: adaptive quality assurance for

adaptive systems. International Journal on Software Tools for Technology Transfer

(2020), 1-20. https://doi.org/10.1007/s10009-020-00560-5

Thomas Gabor, Leo Stinkel, Fabian Ritz, Thomy Phan, Lenz Belzner, et al. 2020.

The Holy Grail of Quantum Artificial Intelligence: Major Challenges in Acceler-

ating the Machine Learning Pipeline. arXiv preprint arXiv:2004.14035 (2020).

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2008. Quantum random

access memory. Physical review letters 100, 16 (2008), 160501. https://doi.org/10.

1103/PhysRevLett.100.160501

[23] Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.

212-219. https://doi.org/10.1145/237814.237866

Thomas Hianer, Damian S Steiger, Krysta Svore, and Matthias Troyer. 2018. A

software methodology for compiling quantum programs. Quantum Science and

Technology 3, 2 (2018), 020501. https://doi.org/10.1088/2058-9565/aaa5cc

[25] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum Algorithm
for Linear Systems of Equations. Physical review letters 103, 15 (2009), 150502.
https://doi.org/10.1103/PhysRevLett.103.150502

[26] HashiCorp. 2020. Terraform. [online]. https://www.terraform.io/

[27] Melanie Herschel, Ralf Diestelkéimper, and Houssem Ben Lahmar. 2017. A Survey
on Provenance: What for? What Form? What from? The VLDB Journal 26, 6
(2017), 881-906. https://doi.org/10.1007/s00778-017-0486-1

[28] Luke E Heyfron and Earl T Campbell. 2018. An efficient quantum compiler
that reduces T count. Quantum Science and Technology 4, 1 (2018), 015004.

[3

[21

[22

S
=}

https://doi.org/10.1007/BFb0101003
https://doi.org/10.1137/080734479
https://doi.org/10.1016/j.knosys.2013.04.015
https://doi.org/10.1016/j.knosys.2013.04.015
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.1145/1739041.1739078
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1109/IC2E.2014.56
https://doi.org/10.1038/nature07128
https://kubernetes.io/
https://doi.org/10.1145/1376616.1376772
https://doi.org/10.1145/1376616.1376772
https://doi.org/10.1103/PhysRevResearch.2.033125
https://doi.org/10.1007/s10009-020-00560-5
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1145/237814.237866
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1103/PhysRevLett.103.150502
https://www.terraform.io/
https://doi.org/10.1007/s00778-017-0486-1

APEQS ’20, November 13, 2020, Virtual, USA

[29]
[30]

[31]

[32]

[34]

[35

[36]

[37]

[38]

[39]

[40]

[41]

[43]

[44]

[45]

[46]

[47]

https://doi.org/10.1088/2058-9565/aad604

IBM. 2020. Qiskit. [online]. https://qiskit.org/

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, et al. 2014.
ScaffCC: A Framework for Compilation and Analysis of Quantum Computing
Programs. In Proceedings of the 11th ACM Conference on Computing Frontiers.
1-10. https://doi.org/10.1145/2597917.2597939

Richard Jozsa. 2006. An introduction to measurement based quantum com-
putation. NATO Science Series, Ill: Computer and Systems Sciences. Quantum
Information Processing-From Theory to Experiment 199 (2006), 137-158.
Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, et al. 2017. Hardware-
efficient variational quantum eigensolver for small molecules and quantum mag-
nets. Nature 549, 7671 (2017), 242-246. https://doi.org/10.1038/nature23879
Elham Kashefi, Adrian Kent, Vlatko Vedral, and Konrad Banaszek. 2002. Com-
parison of quantum oracles. Physical Review A 65, 5 (2002), 050304. https:
//doi.org/10.1103/PhysRevA.65.050304

Kalman Képes, Uwe Breitenbiicher, Frank Leymann, et al. 2019. Deployment of
Distributed Applications Across Public and Private Networks. In Proceedings of
the 23rd IEEE International Enterprise Distributed Object Computing Conference
(EDOC). IEEE, 236-242. https://doi.org/10.1109/EDOC.2019.00036

Emanuel Knill. 2005. Quantum computing with realistically noisy devices. Nature
434, 7029 (2005), 39-44. https://doi.org/10.1038/nature03350

Emanuel Knill, Raymond Laflamme, Rudy Martinez, and Camille Negrevergne.
2001. Benchmarking Quantum Computers: The Five-Qubit Error Correcting
Code. Physical Review Letters 86 (2001), 5811-5814. Issue 25. https://doi.org/10.
1103/PhysRevLett.86.5811

Thomas Kohlborn, Axel Korthaus, and Michael Rosemann. 2009. Business and
Software Service Lifecycle Management. In IEEE International Enterprise Dis-
tributed Object Computing Conference. IEEE, 87-96. https://doi.org/10.1109/
EDOC.2009.20

Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek.
1996. Perfect Quantum Error Correcting Code. Physical Review Letters 77, 1
(1996), 198. https://doi.org/10.1103/PhysRevLett.77.198

Ryan LaRose. 2019. Overview and Comparison of Gate Level Quantum Software
Platforms. Quantum 3 (2019), 130. https://doi.org/10.22331/q-2019-03-25-130
Christopher Lenhardt, Stanley Ahalt, Brian Blanton, Laura Christopherson, et al.
2014. Data Management Lifecycle and Software Lifecycle Management in the
Context of Conducting Science. Journal of Open Research Software 2, 1 (2014).
https://doi.org/10.5334/jors.ax

Frank Leymann. 2019. Towards a Pattern Language for Quantum Algorithms. In
Quantum Technology and Optimization Problems. Springer International Publish-
ing, 218-230. https://doi.org/10.1007/978-3-030-14082-3_19

Frank Leymann and Johanna Barzen. 2020. The bitter truth about gate-based
quantum algorithms in the NISQ era. Quantum Science and Technology 5, 4 (2020),
044007. https://doi.org/10.1088/2058-9565/abae7d

Frank Leymann, Johanna Barzen, and Michael Falkenthal. 2019. Towards a
Platform for Sharing Quantum Software. In Proceedings of the 13th Advanced
Summer School on Service Oriented Computing (IBM Technical Report (RC25685)).
IBM Research Division, 70-74.

Frank Leymann, Johanna Barzen, Michael Falkenthal, et al. 2020. Quantum in the
Cloud: Application Potentials and Research Opportunities. In Proceedings of the
10" International Conference on Cloud Computing and Services Science. SciTePress,
9-24. https://doi.org/10.5220/0009819800090024

Frank Leymann and Dieter Roller. 2000. Production Workflow: Concepts and
Techniques. Prentice Hall PTR.

Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, et al. 2017.
Experimental comparison of two quantum computing architectures. Proceedings
of the National Academy of Sciences 114, 13 (2017), 3305-3310. https://doi.org/10.
1073/pnas.1618020114

Filip B Maciejewski, Zoltan Zimboras, and Michat Oszmaniec. 2019. Mitigation
of readout noise in near-term quantum devices by classical post-processing
based on detector tomography. arXiv preprint arXiv:1907.08518 (2019). https:
//doi.org/10.22331/q-2020-04-24-257

[48] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alan Aspuru-Guzik.

[49]

[50]

[51]

[52]

2016. The theory of variational hybrid quantum-classical algorithms. New Journal
of Physics 18, 2 (2016), 023023. https://doi.org/10.1088/1367-2630/18/2/023023
Kristel Michielsen, Madita Nocon, Dennis Willsch, Fengping Jin, et al. 2017.
Benchmarking gate-based quantum computers. Computer Physics Communica-
tions 220 (2017), 44 - 55. https://doi.org/10.1016/j.cpc.2017.06.011

Andriy Miranskyy, Lei Zhang, and Javad Doliskani. 2020. Is Your Quantum
Program Bug-Free?. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). Association
for Computing Machinery, 29-32. https://doi.org/10.1145/3377816.3381731
Kosuke Mitarai, Masahiro Kitagawa, and Keisuke Fujii. 2019. Quantum analog-
digital conversion. Physical Review A 99, 1 (2019), 012301. https://doi.org/10.
1103/PhysRevA.99.012301

Michele Mosca. 2008. Quantum Algorithms. arXiv preprint arXiv:0808.0369
(2008).

Benjamin Weder, Johanna Barzen, Frank Leymann, Marie Salm, and Daniel Vietz

[53

[54

[55

[56]

[57

(58]

[59

[64

[65

[66]

[67

o
&,

[69

[70

(71

[72

[73

[74

[75

[76

[77

[79

(80]

Nabil Mohammed Ali Munassar and A Govardhan. 2010. A Comparison Between
Five Models Of Software Engineering. International Journal of Computer Science
Issues (IJCSI) 7, 5 (2010), 94.

Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The Art of Software
Testing. John Wiley & Sons.

Michael A Nielsen and Isaac Chuang. 2002. Quantum Computation and Quantum
Information.

Roee Ozeri. 2011. The trapped-ion qubit tool box. Contemporary Physics 52, 6
(2011), 531-550. https://doi.org/10.1080/00107514.2011.603578

Beatriz Pérez, Julio Rubio, and Carlos Saenz-Adan. 2018. A systematic review of
provenance systems. Knowledge and Information Systems 57, 3 (2018), 495-543.
https://doi.org/10.1007/s10115-018-1164-3

Jarryd J. Pla, Kuan Y. Tan, Juan P. Dehollain, Wee H. Lim, et al. 2012. A single-
atom electron spin qubit in silicon. Nature 489, 7417 (2012), 541-545. https:
//doi.org/10.1038/nature11449

John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2(2018), 79. https://doi.org/10.22331/q-2018-08-06-79

Michael D. Reed, Leonardo DiCarlo, S. E. Nigg, L. Sun, et al. 2012. Realization of
three-qubit quantum error correction with superconducting circuits. Nature 482,
7385 (2012), 382-385. https://doi.org/10.1038/nature10786

Rigetti. 2020. Docs for the Forest SDK. [online]. http://docs.rigetti.com/en/stable/
Marie Salm, Johanna Barzen, Uwe Breitenbiicher, Frank Leymann, et al. 2020. A
Roadmap for Automating the Selection of Quantum Computers for Quantum
Algorithms. arXiv preprint arXiv:2003.13409 (2020).

Artur Scherer, Benoit Valiron, Siun-Chuon Mau, Scott Alexander, et al. 2017.
Concrete resource analysis of the quantum linear-system algorithm used to
compute the electromagnetic scattering cross section of a 2D target. Quantum
Information Processing 16, 3 (2017), 60. https://doi.org/10.1007/s11128-016-1495-5
Eyob A. Sete, William J. Zeng, and Chad T. Rigetti. 2016. A Functional Architecture
for Scalable Quantum Computing. In IEEE International Conference on Rebooting
Computing. 1-6. https://doi.org/10.1109/ICRC.2016.7738703

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (1997),
1484-1509. https://doi.org/10.1137/S0036144598347011

Sukin Sim, Yudong Cao, Jonathan Romero, Peter D Johnson, et al. 2018. A
framework for algorithm deployment on cloud-based quantum computers. arXiv
preprint arXiv:1810.10576 (2018).

Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. 2005. A Survey of Data
Provenance in e-Science. SIGMOD Rec. 34, 3 (2005), 31-36. https://doi.org/10.
1145/1084805.1084812

Daniel R Simon. 1994. On the power of quantum cryptography. In 35th Annual
Symposium on Foundations of Computer Science. 116-123.

Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,
and Ross Duncan. 2020. t| ket>: A retargetable compiler for NISQ devices. Quan-
tum Science and Technology (2020). https://doi.org/10.1088/2058-9565/ab8e92
Robert S Smith, Michael J Curtis, and William J Zeng. 2016. A Practical Quantum
Instruction Set Architecture. arXiv preprint arXiv:1608.03355 (2016).

Chao Song, Jing Cui, H Wang,] Hao, H Feng, and Ying Li. 2019. Quantum
computation with universal error mitigation on a superconducting quantum
processor. Science advances 5, 9 (2019). https://doi.org/10.1126/sciadv.aaw5686
Andrew Steane. 1998. Quantum computing. Reports on Progress in Physics 61, 2
(1998), 117. https://doi.org/10.1088/0034-4885/61/2/002

Martin Suchara, John Kubiatowicz, Arvin Faruque, et al. 2013. QuRE: The Quan-
tum Resource Estimator Toolbox. In IEEE 31st International Conference on Com-
puter Design (ICCD). IEEE, 419-426. https://doi.org/10.1109/ICCD.2013.6657074
Krysta M Svore, Alfred V Aho, Andrew W Cross, Isaac Chuang, et al. 2006. A
Layered Software Architecture for Quantum Computing Design Tools. Computer
39, 1 (2006), 74-83. https://doi.org/10.1109/MC.2006.4

Swamit S Tannu and Moinuddin K Qureshi. 2019. Not All Qubits Are Created
Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. 987-999.

Shiou-An Wang, Chin-Yung Lu, I-Ming Tsai, and Sy-Yen Kuo. 2008. An XQDD-
Based Verification Method for Quantum Circuits. IEICE transactions on fundamen-
tals of electronics, communications and computer sciences 91, 2 (2008), 584-594.
Brent R Waters, Dirk Balfanz, Glenn Durfee, and Diana K Smetters. 2004. Building
an Encrypted and Searchable Audit Log. In NDSS, Vol. 4. Citeseer, 5-6.
Benjamin Weder, Uwe Breitenbiicher, Kalman Képes, Frank Leymann, and
Michael Zimmermann. 2020. Deployable Self-contained Workflow Models. In Pro-
ceedings of the 8th European Conference on Service-Oriented and Cloud Computing
(ESOCC). Springer, 85-96. https://doi.org/10.1007/978-3-030-44769-4_7
Michael Wurster, Uwe Breitenbiicher, Michael Falkenthal, Christoph Krieger, et al.
2019. The Essential Deployment Metamodel: A Systematic Review of Deployment
Automation Technologies. Software-Intensive Cyber-Physical Systems (2019).
Jianjun Zhao. 2020. Quantum Software Engineering: Landscapes and Horizons.
arXiv preprint arXiv:2007.07047 (2020).

All links were last followed on October 12, 2020.

https://doi.org/10.1088/2058-9565/aad604
https://qiskit.org/
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevA.65.050304
https://doi.org/10.1103/PhysRevA.65.050304
https://doi.org/10.1109/EDOC.2019.00036
https://doi.org/10.1038/nature03350
https://doi.org/10.1103/PhysRevLett.86.5811
https://doi.org/10.1103/PhysRevLett.86.5811
https://doi.org/10.1109/EDOC.2009.20
https://doi.org/10.1109/EDOC.2009.20
https://doi.org/10.1103/PhysRevLett.77.198
https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.5334/jors.ax
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.5220/0009819800090024
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.22331/q-2020-04-24-257
https://doi.org/10.22331/q-2020-04-24-257
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1016/j.cpc.2017.06.011
https://doi.org/10.1145/3377816.3381731
https://doi.org/10.1103/PhysRevA.99.012301
https://doi.org/10.1103/PhysRevA.99.012301
https://doi.org/10.1080/00107514.2011.603578
https://doi.org/10.1007/s10115-018-1164-3
https://doi.org/10.1038/nature11449
https://doi.org/10.1038/nature11449
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/nature10786
http://docs.rigetti.com/en/stable/
https://doi.org/10.1007/s11128-016-1495-5
https://doi.org/10.1109/ICRC.2016.7738703
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1145/1084805.1084812
https://doi.org/10.1145/1084805.1084812
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1126/sciadv.aaw5686
https://doi.org/10.1088/0034-4885/61/2/002
https://doi.org/10.1109/ICCD.2013.6657074
https://doi.org/10.1109/MC.2006.4
https://doi.org/10.1007/978-3-030-44769-4_7

