
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{weder, barzen, leymann}@iaas.uni-stuttgart.de

MODULO: Modeling, Transformation, and
Deployment of Quantum Workflows

Benjamin Weder, Johanna Barzen, and Frank Leymann

© 2021 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Weder2021_MODULO,
author = {Weder, Benjamin and Barzen, Johanna and Leymann, Frank},
title = {{MODULO: Modeling, Transformation, and Deployment

of Quantum Workflows}},
booktitle = {Proceedings of the 25th IEEE International

Enterprise Distributed Object Computing Workshop (EDOCW 2021)},
year = {2021},
month = oct,
pages = {341--344},
doi = {10.1109/EDOCW52865.2021.00067},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

MODULO: Modeling, Transformation,
and Deployment of Quantum Workflows

Benjamin Weder, Johanna Barzen, and Frank Leymann
University of Stuttgart, Institute of Architecture of Application Systems, Germany

Email: [firstname.lastname]@iaas.uni-stuttgart.de

Abstract—Quantum applications are usually hybrid, i.e., they
require executing quantum programs and classical programs,
e.g., performing pre- or post-processing tasks. To benefit from
advantages, such as robustness, reliability, or scalability, these
programs can be orchestrated using quantum workflows. How-
ever, modeling quantum-specific tasks in workflows is com-
plex and requires deep technical and mathematical knowledge.
Furthermore, additional steps have to be performed before
executing the workflow, e.g., the deployment and binding of the
needed services. In this demonstration, we present the MODULO
framework, providing a workflow modeling extension easing the
modeling of quantum workflows. It comprises an integrated
toolchain to graphically model quantum workflows, transform
and package them in a self-contained archive, and automatically
deploying the workflows together with their required services.

Index Terms—Quantum Computing, Workflow Technology,
Quantum Workflows, Service Deployment Automation

I. INTRODUCTION AND MOTIVATION

Recent advances in developing new or improving existing
quantum computers enable utilizing quantum computing in
more and more application areas, e.g., machine learning or
simulations [1], [2]. Furthermore, quantum computers from
different vendors, such as IBM or Rigetti, are publicly acces-
sible via the cloud [3], [4]. Thus, the need for developing quan-
tum applications will increase dramatically in the next years.
Such quantum applications are typically hybrid, consisting of
quantum and classical programs [5], [6]. Classical programs
are, e.g., used to prepare classical data for the processing in
the quantum computer or mitigate errors after performing a
quantum computation, which is needed due to today’s noisy
quantum computers [6], [7]. Additionally, different quantum
algorithms, such as Simon’s or Shor‘s algorithm, require
algorithm-specific pre- and post-processing steps, which have
to be implemented using classical programs [2], [5]. There-
fore, the programs comprising a quantum application must
be orchestrated, which can be done using so-called quantum
workflows [5]. The usage of mature workflow systems enables
benefiting from their robustness, scalability, and sophisticated
error handling mechanisms [8]. Further, quantum workflows
ease the integration of quantum applications into more com-
plex business applications relying on workflow technology.

However, existing workflow languages do not provide ex-
plicit modeling constructs for the required pre-processing,
quantum program execution, and post-processing tasks [7].
This leads to a complex and error-prone modeling process
of quantum workflows, requiring deep technical and mathe-

matical knowledge. The missing explicit modeling constructs
also complicate finding existing implementations for different
tasks to reuse them. Additionally, before executing a quantum
workflow, the required services invoked by the workflow must
be deployed and bound to the workflow [9]. However, quantum
experts implementing a quantum application are often not used
to these tasks. Thus, they must be automated as far as possible.

To tackle these challenges, we present the MODULO frame-
work, enabling the modeling, transformation, and deployment
of quantum workflows. It incorporates a workflow modeling
extension for quantum computing with a graphical notation to
ease the modeling of quantum workflows. Further, it provides
an integrated toolchain supporting the automated transforma-
tion of resulting workflow models to native workflow models
to retain their portability, as well as the deployment of the
quantum workflow with the required services and their bind-
ing. In the following, we introduce the method implemented
by the MODULO framework and the corresponding system
architecture. Finally, we summarize our demonstration, includ-
ing the target audience, useful takeaways, and two use cases.

II. MODELING, TRANSFORMATION, AND DEPLOYMENT
OF QUANTUM WORKFLOWS

In this section, we present our method to model, transform,
and deploy quantum workflows, which is supported by the
MODULO framework. Fig. 1 gives an overview of the method.

A. QuantME Modeling

First, the quantum workflow is modeled by defining the col-
lection of required activities, as well as their partial order and
data flow between them in a workflow model [5], [8]. Thereby,
the activities, e.g., comprise different pre- and post-processing
tasks, the execution of quantum programs, or other traditional
activities, such as human tasks or service invocations [5]. To
ease the modeling of quantum-specific tasks and increase the
reuse of their implementations, we introduced the Quantum
Modeling Extension (QuantME) [7], providing explicit model-
ing constructs for different frequently occurring tasks. Further-
more, each modeling construct specifies a set of configuration
attributes to customize it depending on the context in the
quantum workflow, e.g., by defining the quantum computer for
the execution of a quantum program [7]. Thereby, QuantME
can be applied to various imperative workflow languages, such
as the Business Process Model and Notation (BPMN) [10],
which is also used within the MODULO framework.

Quantum Application Archive (QAA)

QuantME
Workflow Model

QAA

Native
Workflow Model

Deployment
Models

QRMs

Deployment
Sub-Step

5

Workflow
Execution

1 2 3

QuantME
Modeling

QuantME
Transformation

Self-Contained
Packaging

4

Deployment

Manual
Step

Automated
Step

Legend: Deployment
Model

D

Quantum
Computer

Cloud

Workflow
Engine

Deployment
System

Deployment
System

Deployment
Orchestrator

DD

Execution
Sub-Step

Repository

Self-Contained
Workflow Model

D

Data

Code

Fig. 1. Overview of the MODULO method, supporting the modeling, transformation, and deployment of quantum workflows

B. QuantME Transformation

However, the usage of the QuantME modeling constructs
reduces the portability of the workflow models between dif-
ferent workflow engines, as the target workflow engine must
be extended to support the new modeling constructs [7].
Therefore, the workflow model is transformed into a native
workflow model in the second step, consisting only of na-
tive modeling constructs of the extended workflow language.
For this, the QuantME modeling constructs are iteratively
replaced by reusable workflow fragments implementing the
required functionality [7], [11]. Thereby, so-called QuantME
Replacement Models (QRMs) [7] are utilized (see Fig. 1).
In addition to the workflow fragments, QRMs contain a
detector, defining the QuantME modeling construct that can
be replaced. Furthermore, restrictions can be specified, e.g.,
that the QuantME modeling construct can only be replaced
if it is configured in a certain way utilizing its configuration
attributes. For example, if a QRM is only suitable to execute
quantum programs using quantum computers from IBM and
not from Rigetti, this can then be defined in the attributes of
the detector. Thereby, the workflow fragments used for the
replacement are also allowed to contain QuantME modeling
constructs. Hence, these modeling constructs are replaced in
the next iterations until a native workflow model is reached.

C. Self-Contained Packaging

After the transformation, the native workflow model can
be transferred into the target environment for its execution.
However, the manual transfer of all needed information, e.g.,
the required software artifacts to deploy a service that is in-
voked by the workflow, is time-consuming and error-prone [9].
Therefore, this information is packaged into a self-contained
archive, the so-called quantum application archive (QAA) [5].
Hence, only a single archive has to be transferred into the
target environment. The QAA comprises the self-contained
workflow model [9], which has a deployment model attached
to each activity of the workflow model that requires the
deployment of a service. These services can then be auto-

matically deployed in the target environment before executing
the workflow (see Section II-D). Furthermore, it also allows
attaching multiple deployment models to a workflow activity.
This enables the selection of one deployment model, e.g.,
based on the available infrastructure in the target environment
or the quality of service requirements. Additionally, the QAA
contains the code of required quantum and classical programs,
as well as special data if needed by the quantum workflow [5].

D. Deployment
In the target environment, the QAA is passed to the so-called
deployment orchestrator [9]. The deployment orchestrator is in
charge of deploying required services for quantum workflows.
Thus, it extracts the deployment models from the QAA and
passes them to a corresponding deployment system. Thereby,
the deployment orchestrator is plugin-based to support using
different deployment systems, such as Kubernetes [12], Ter-
raform [13], or the OpenTOSCA Container [14], depending
on the type of deployment models. If multiple deployment
models are defined for a certain activity, the deployment
orchestrator automatically selects a suitable one [9]. Most
quantum computers offered over the cloud require sending
quantum programs together with the execution request [4].
Then, no previous deployment of these programs is needed.
After deploying all required services, the binding between
workflow and services must be performed. For this, the
deployment orchestrator enriches the workflow model with
information about the service endpoints, such as the protocol
to use to invoke the service or its IP address. Afterwards, the
workflow is uploaded to a workflow engine for execution.

E. Workflow Execution
Finally, the quantum workflow is instantiated and executed.
The instantiation can be triggered by a certain event, e.g.,
periodically executing the quantum workflow, or by the user,
who can then pass additional input parameters to the workflow
instance [7], [9]. During workflow execution, the workflow
engine invokes deployed services and kicks off the execution
of quantum programs on a quantum computer (see Fig. 1) [5].

Winery

CSAR Importer/
Exporter

Topology
Modeler TOSCA Elements

Management

Topology
Templates

Types &
Artifacts

OpenTOSCA Container

Management
Bus

Plan RuntimePlan Builder

Models & Instances

Operation
Runtime

QuantME Transformation Framework

Deployment
Orchestrator

QuantME
Transformer

QuantME
Modeler

QRMs
Deployment

Models

Self-Contained
Packager

Camunda BPMN Workflow Engine

Camunda
Tasklist

Camunda
Cockpit

Instance
State

Audit
Trail

QAA

DD

Fig. 2. Architecture of the MODULO framework (new components are black, extended components are grey, and existing unchanged components are light)

III. OVERVIEW OF THE MODULO FRAMEWORK

The MODULO framework is an extension of the Camunda
workflow system 1, consisting of a graphical BPMN modeler
and a BPMN workflow engine, as well as extensions of the
OpenTOSCA ecosystem [14]. The OpenTOSCA ecosystem
comprises Winery, a graphical modeling tool for TOSCA-
based deployment models, and the OpenTOSCA Container,
a TOSCA-compliant deployment system. Fig. 2 shows the
architecture of the framework with the relevant components.

The QuantME Transformation Framework2 extends the Ca-
munda BPMN modeler to support the QuantME modeling
constructs. Therefore, the QuantME modeler component en-
ables the graphical modeling of all introduced modeling con-
structs, as well as the native BPMN modeling constructs [7].
Furthermore, the transformation to native workflow models
is implemented by the QuantME transformer, using a corre-
sponding database with QRMs (see Section II-B). The self-
contained packager component is in charge of packaging
all required information into the self-contained QAA (see
Section II-C) [5]. For this, it uses a repository with deployment
models that can be associated with activities in the workflow
model, which are then added to the archive on export [9]. This
repository is implemented by a Winery instance, managing
the available TOSCA-based deployment models [14], [15].
Finally, the deployment orchestrator performs the deployment
of all required software artifacts for a quantum workflow and
the binding of the workflow and the deployed services [9].

The Camunda BPMN Workflow Engine is used without ex-
tensions in the MODULO framework, as the workflow models
are transformed to native workflow models before uploading
and executing them [7]. It comprises the Camunda cockpit,
visualizing the uploaded workflow models, the corresponding
workflow instances, and their current state. Further, pending

1https://camunda.com/products/camunda-platform
2https://github.com/UST-QuAntiL/QuantME-TransformationFramework

user tasks of the workflow instances are managed by the
Camunda tasklist. While a workflow instance is running, its
state is stored in the instance state database, e.g., the currently
active activities [5]. After termination of the instance, this
information is moved to the audit trail for long-term storage.

Winery3 provides a topology modeler component, enabling
the graphical modeling of topologies for applications. Topolo-
gies describe the components comprising an application and
their desired target state [9]. Hence, they are also referred
to as declarative deployment models and can be used to
deploy the required services for a quantum workflow [5]. As
Winery is based on the TOSCA standard [15], topologies are
defined as topology templates and stored in a corresponding
repository [14]. However, topology templates usually depend
on different TOSCA elements, e.g., node types, to define the
semantics of a component [15]. Therefore, these elements
are managed by the TOSCA elements management component
and stored in the corresponding types & artifacts repository
within Winery. Finally, before attaching the required topology
templates to the activities of a quantum workflow, they have to
be packaged with all their dependencies. For this, the TOSCA
standard introduces the cloud service archive (CSAR) pack-
aging format. Thus, the CSAR importer/exporter component
enables packaging, exporting, and importing CSARs.

All CSARs attached to activities of the workflow model in
the QAA are uploaded to the OpenTOSCA Container4 by the
deployment orchestrator. Then, the plan builder interprets the
contained declarative topology template and derives an im-
perative provisioning plan defining the deployment operations
to be executed to set up an application. For the deployment,
the provisioning plan is executed using the plan runtime com-
ponent. During runtime, the plan invokes different software
artifacts implementing the required deployment operations,

3https://github.com/OpenTOSCA/winery
4https://github.com/OpenTOSCA/container

https://camunda.com/products/camunda-platform
https://github.com/UST-QuAntiL/QuantME-TransformationFramework
https://github.com/OpenTOSCA/winery
https://github.com/OpenTOSCA/container

e.g., to create a virtual machine. These software artifacts can
be implemented, e.g., as a WAR file using Java or by a Python
script. Hence, a corresponding runtime for the various kinds of
software artifacts is required, which is provided by the plugin-
based operation runtime. Further, different software artifacts
might require varying protocols or invocation mechanisms.
These details are abstracted by the management bus, which
handles all communication. Finally, the uploaded CSARs
and information about service instances that are currently
provisioned or for which the deployment is already finished
are stored in the models & instances repository.

IV. DEMONSTRATION

In the following, we discuss the target audience of this
demonstration and how they can benefit from MODULO.
Additionally, we present the use cases of the demonstration.

A. Target Audience & Benefits of the MODULO Framework

The MODULO framework is intended for two different user
groups, and thus, also the target audience that will benefit from
attending the demonstration is twofold: (i) First, workflow
modelers that are used to workflow technologies and want
to integrate quantum computations into their workflows, but
have only limited knowledge about quantum computing. Due
to the abstractions provided by QuantME, they can model
the different pre-processing, quantum program execution, and
post-processing tasks of a quantum algorithm without having
to understand all the quantum-specific details. Furthermore,
the explicit configuration attributes for the various QuantME
tasks still enable them to customize the steps of the quantum
algorithm to their needs, e.g., by selecting different data
encodings or quantum computers to use. (ii) The second user
group are quantum experts who often implement their quan-
tum applications as monolithic python applications and want
to incorporate the advantages provided by mature workflow
technologies into their applications. Thereby, they also benefit
from the introduced modeling extension, but additionally, the
automation of the service deployment and binding is important
for them to ease the usage of workflows. Finally, both user
groups will take advantage of the reduced modeling effort
and the increased reuse of programs, services, and workflow
fragments, which we evaluated in previous work [7].

B. Use Cases & Presented Features

To demonstrate the MODULO method presented in Fig. 1, we
utilize two different use cases that are detailed below.

Simon‘s algorithm: First, the various QuantME modeling
constructs [7], their purpose, and their graphical notation are
introduced. These modeling constructs are then used to model
a workflow implementing Simon‘s algorithm using the MOD-
ULO framework. Thereby, it can be modeled abstractly using
just one QuantME task and is then transformed in two steps
into a native workflow model comprising seven tasks, showing
the achieved simplification. Further, it is demonstrated how
different configuration attributes of the QuantME tasks result
in different workflow models during transformation.

Quantum machine learning: Although the first use case
implementing Simon‘s algorithm provides a comparatively
simple workflow model, which is easy to understand, the
practical applicability of the solved problem is limited. Thus,
the second use case demonstrates a more complex quantum
workflow executing two quantum algorithms for clustering and
classification [5]. For this use case, it is shown how deploy-
ment models for services are modeled, attached to activities
of a workflow, and how the MODULO framework supports
their automated deployment and binding with the workflow.

The discussed use-cases, as well as further example use
cases implemented using the MODULO framework, can be
found on Github [16], together with a detailed description of
how to set up and use the framework. Furthermore, a short
demonstration video is available on YouTube [17].

ACKNOWLEDGMENT

The authors would like to thank the German Research Foun-
dation (DFG) for financial support of the project within the
Cluster of Excellence in Simulation Technology (EXC 2075 –
390740016) at the University of Stuttgart. This work was par-
tially funded by the BMWi project PlanQK (01MK20005N).

REFERENCES

[1] J. Barzen, “From Digital Humanities to Quantum Humanities: Potentials
and Applications,” arXiv:2103.11825, 2021.

[2] B. Weder et al., “Quantum Software Development Lifecycle,”
arXiv:2106.09323, 2021.

[3] F. Leymann et al., “Quantum in the Cloud: Application Potentials
and Research Opportunities,” in Proceedings of the 10th International
Conference on Cloud Computing and Services Science (CLOSER).
SciTePress, 2020, pp. 9–24.

[4] R. LaRose, “Overview and Comparison of Gate Level Quantum Soft-
ware Platforms,” Quantum, vol. 3, 2019.

[5] B. Weder et al., “Hybrid Quantum Applications Need Two Orches-
trations in Superposition: A Software Architecture Perspective,” in
Proceedings of the 18th IEEE International Conference on Web Services.
IEEE, 2021.

[6] F. Leymann and J. Barzen, “The bitter truth about gate-based quantum
algorithms in the NISQ era,” Quantum Science and Technology, vol. 5,
no. 4, 2020.

[7] B. Weder et al., “Integrating Quantum Computing into Workflow Model-
ing and Execution,” in Proceedings of the 13th International Conference
on Utility and Cloud Computing (UCC). IEEE, 2020, pp. 279–291.

[8] F. Leymann and D. Roller, Production Workflow: Concepts and Tech-
niques. Prentice Hall PTR, 2000.

[9] B. Weder et al., “Deployable Self-contained Workflow Models,” in
Proceedings of the 8th European Conference on Service-Oriented and
Cloud Computing (ESOCC). Springer, 2020, pp. 85–96.

[10] OMG, Business Process Model and Notation (BPMN) Version 2.0,
Object Management Group, 2011.

[11] H. Eberle et al., “Process Fragments,” in On the Move to Meaningful
Internet Systems (OTM). Springer, 2009, pp. 398–405.

[12] CNCF. (2021) Kubernetes. [Online]. Available: https://kubernetes.io
[13] HashiCorp. (2021) Terraform. [Online]. Available: https://www.

terraform.io
[14] U. Breitenbücher et al., “The OpenTOSCA Ecosystem - Concepts &

Tools,” European space project on smart systems, big data, future
internet-Towards serving the grand societal challenges, vol. 1, pp. 112–
130, 2016.

[15] OASIS, Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) Version 1.0, 2013.

[16] University of Stuttgart. (2021) Quantum Workflow Use Cases. [Online].
Available: https://github.com/UST-QuAntiL/QuantME-UseCases

[17] University of Stuttgart. (2021) Demonstration Video. [Online].
Available: https://youtu.be/7MveQFcfkDQ

All links were last followed on September 24, 2021.

https://kubernetes.io
https://www.terraform.io
https://www.terraform.io
https://github.com/UST-QuAntiL/QuantME-UseCases
https://youtu.be/7MveQFcfkDQ

