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Abstract—Quantum applications are most often hybrid, i.e.,
they are not only made of implementations of pure quantum
algorithms but also of classical programs as well as workflows
and topologies as key artifacts, and data they process. Since
workflows and topologies are referred to as ”orchestrations” in
modern terminology (but with very different meanings), two
orchestrations that go hand-in-hand are required to realize
quantum applications. We motivate this by means of a non-
trivial example, sketch these orchestration technologies, and
reveal the overall structure of non-trivial quantum applications.
Furthermore, we discuss the implied architecture of a runtime
environment for such quantum applications. To validate the
introduced architecture, we present a prototypical implemen-
tation based on the Camunda workflow engine, its associated
modeling tool, as well as the OpenTOSCA ecosystem.

Keywords-Quantum Computing, NISQ, Software Engineer-
ing of Quantum Applications, Hybrid Quantum-Classical Ap-
plications, Runtime for Quantum Applications

I. INTRODUCTION

Nowadays, quantum applications are in most cases hybrid,
i.e., they encompass not only implementations of one or
more quantum algorithms but require classical programs
as well in order to produce their final result [1], [2], [3].
This is most evident by the requirement for pre- and post-
processing. For example, pre-processing generates quantum
circuits for state preparation within a classical environment
and prepends these quantum circuits to the quantum algo-
rithm proper [1], [4], [5]. These state preparation circuits
then create - when being executed - the quantum state
that represents the input to be processed by the quantum
algorithm in the register of the quantum computer [3],
[6]. An example for post-processing is the correction of
readout-errors within a classical environment by applying
an unfolding technique to compute the less disturbed result
distribution from the disturbed measured distribution [7], [8].

But even algorithms that are often considered as ”proper
quantum” algorithms are in fact hybrid. For example, the
factorization algorithm of Shor [9] consists of a quantum
part utilizing a Quantum Fourier Transform (QFT) [10] to
find the period of a function. After the quantum computation,
the output must be post-processed by a classical program by
means of analyzing continued fractions [9], [11]. Therefore,
the implementation of this quantum algorithm needs to
integrate with a classical program to produce its final result.

In general, a hybrid quantum application (or quantum
application for short) is not only made of implementations
of quantum algorithms (called quantum programs from here
on) and classical programs. Furthermore, it also comprises
data to be processed, workflows, and topology models. The
quantum programs may be written in a quantum assembler,
such as OpenQASM1 or Quil2, or a host programming lan-
guage using quantum libraries, such as Qiskit3 or Cirq4 [12],
[13], [14]. Additionally, the classical programs can be im-
plemented in any programming language and run in any
execution environment. The data to be processed may be
provided by value or by reference (and then retrieved), have
to be properly transformed, etc. Workflows may be used
for preparing data for further processing, for controlling the
execution order of the quantum programs and classical pro-
grams, as well as passing data between these programs [15].
Finally, topology models enable to provision the execution
environment for the quantum and classical programs [16].

In this paper, we extend [17] and (i) present a non-trivial
quantum application from the domain of the humanities [18]
that motivates the use of workflow technology [19], [20]
as a major enabler for real-world quantum applications.
Further, (ii) the need for provisioning technology as the other
major enabler is described. Thereby, it enables the automatic
provisioning of the required execution environments for
quantum and classical programs, as well as their update, e.g.,
if a new software version is available [21], [22]. Moreover,
we (iii) discuss the implied architecture of a modeling and
runtime environment for such quantum applications. Finally,
(iv) a prototypical implementation of the introduced archi-
tecture and our sample quantum application are presented.

This paper is structured as follows: Section II sketches
fundamentals about workflow technology and introduces our
sample quantum application. Then, Section III describes the
need for provisioning technology to set up the environment
to execute a workflow. In Section IV, the runtime environ-
ment for quantum applications is detailed, and Section V
presents our prototypical implementation. Section VI dis-
cusses related work and we conclude in Section VII.

1https://github.com/qiskit/openqasm
2https://github.com/rigetti/quil
3https://qiskit.org
4https://github.com/quantumlib/cirq
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Figure 1. The Workflow of the Sample Hybrid Quantum Application.

II. WORKFLOWS: ORCHESTRATING
CONTROL- AND DATA FLOW

In this section, we briefly sketch the concept of a workflow
model and a workflow instance. Furthermore, we describe a
real-world sample hybrid quantum application.

A. Workflows in a Nutshell

Workflow technology is well-established since decades [19],
[20]. In a nutshell, it is a technology to specify the partial
order of a collection of activities that have to be performed
to achieve a composite goal. The partial order is based
on control flow dependencies between the activities [19].
Typically, the activities are represented as nodes in a directed
graph (see Figure 1), and the control flow dependencies are
the edges of the graph [23]. Such an edge points from a
certain activity to those activities that may have to be per-
formed once the source activity finished successfully [20].
Whether or not a target activity is performed is controlled
by a Boolean condition associated with the corresponding
edges [19]. This condition is evaluated based on data that has
been returned by already finished activities. This way, the set
of activities performed by a workflow is highly dependent on
the results of the activities. Consequently, the actual paths
taken through the graph typically change from execution
to execution of the workflow [20]. The directed graph
representing the workflow is referred to as a workflow model,
and an execution of such a workflow model is referred
to as an instance of the model [19]. Nowadays, workflow
models are usually specified in BPMN [24], which is a
graphical language with an operational semantics describing
how instances of a workflow graph are created. [23] gives
an overview of several key languages for specifying work-
flow models. Thereby, workflow technology provides several
benefits, such as robustness, reliability, and scalability [19],
[25]. Furthermore, it allows the specification of alternative
control flows in the case of an error [20], the definition of
transactions comprising multiple activities [26], as well as
compensation actions for different activities [19], [27].

B. A Sample Hybrid Quantum Application

Figure 1 shows a sample hybrid quantum application ap-
plying quantum machine learning in the domain of the
humanities [18]. The presented quantum application will
perform clustering on a set of input data, and based on
the clustering results, train a classifier for the classification
of further data. As input data, a subset from the MUSE5

repository [28] is used, which contains data about costumes
identified by analyzing various films [29]. Therefore, the
first activity of the workflow retrieves the input data from
the MUSE repository. This activity is implemented by
a classical program, as indicated by the ”hammer” icon
associated with the activity. The retrieved costume data
are often categorical, e.g., the different colors of pieces of
clothes comprising a costume [12]. However, most of the
(quantum) machine learning algorithms require numerical
or metrical data [18]. Thus, the categorical data must be
transformed into numerical data before applying the machine
learning algorithms [30]. For this, the second activity of the
workflow computes the distance matrix of this categorical
data based on the Wu-Palmer similarity measure [31]. Then,
multidimensional scaling (MDS) [32] is applied to reduce
the dimension of the feature space, which is implemented
by a classical program too. After that, clusters in the data are
determined, which involves a sub-workflow (indicated by the
“gear” icon) utilizing the negative rotation quantum k-means
algorithm [33]. This sub-workflow comprises activities that
are implemented by classical programs, as well as quantum
programs (indicated by the ”atom” icon), and is discussed in
more detail in Section V-B. The results of the clustering sub-
workflow are used by another sub-workflow, which trains a
classifier using a variational quantum support vector ma-
chine (SVM) [34]. Finally, the trained classifier is evaluated.
This includes, e.g., classical programs generating test data,
and quantum programs performing the classification with the
trained parameterization of the variational quantum SVM.

5https://www.iaas.uni-stuttgart.de/en/projects/muse
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Figure 2. Executing a Workflow.

C. Executing a Workflow

A workflow model will be executed by a workflow en-
gine [19], [20], [25]. For this purpose, the workflow engine
navigates through the workflow model: For example, it deter-
mines the activities that are ready to be performed, collects
their input data, starts (and controls) their execution (in
parallel), and retrieves their output. Further, the workflow
engine detects once an activity completes successfully -
based on the transition conditions of the edges leaving a
completed activity - the activities to be executed next. Such
a workflow in execution is referred to as an instance of the
corresponding workflow model (see [19] for the details).
Note that especially in a cloud environment workflows are
also called orchestrations - based on the mental model that
a workflow ”orchestrates” all the actions required to create a
single whole from the executions of the individual activities.

Obviously, the workflow engine must know how an
activity is implemented. Therefore, the workflow model
associates with each activity its implementation, e.g., a
classical program or a quantum program, or it specifies how
an implementation can be discovered at runtime, e.g., using
a service registry [35], [36]. Once an activity is determined
to be ready for execution, its input data is gathered by
the workflow engine, transformed into a format required by
its implementation, and passed to the implementation [19],
[37]. This implies that the workflow engine understands the
invocation mechanism of the implementation [20], [38]. For
example, how to call a Java or Python program, how to
serve a REST API, how to start another workflow, how to
communicate via a message queue, and so on. The different
implementations of the various activities may not only be
very heterogeneous but especially highly distributed, and
they may run in very different environments. Furthermore,
some of the activity implementations may be long-running
and return responses asynchronously at unforeseen times,
which implies that the workflow engine must understand
how to correlate incoming data with workflow instances and
running activities therein to detect their completion [19].

This in turn requires that the state of a workflow in-
stance (consisting of the state of each of its activities, the
input and output data of the activities, and so on) must be
made persistent by the workflow engine [19]. Especially,
this implies that the execution of a workflow is interruptible.
Also, errors are detected by the workflow engine, and parts
of a workflow instance can be automatically undone if such
an error is detected [20]. This requires that for activities to be
undone a compensation activity is assigned, which the work-
flow engine will invoke in case of an error [27]. Activities
may be grouped into corresponding units of work that have
transactional semantics. Thus, a workflow is recoverable.

Figure 2 shows a workflow engine and a workflow model
navigated by this engine. The implementations correspond-
ing to the activities are available to the workflow engine.
When navigating the workflow model, the state information
about the corresponding instance is stored in a database (see
instance state). This allows to monitor running workflow in-
stances [19]. Once an instance is completed, the information
about the history of its execution (i.e., the steps performed,
their duration, input/output data, reasons for taking a partic-
ular path, etc.) is moved to another database referred to as
audit trail [39]. The audit trail can be analyzed to improve
workflows (making it faster, cheaper, correcting modeling
errors, etc.) and enable reproducibility of results [40], [41].

III. PROVISIONING: ORCHESTRATING
TOPOLOGY DEPLOYMENT

In this section, we sketch how the environment required
for executing a workflow is specified and automatically set
up. Furthermore, we discuss the structure of an archive to
package hybrid quantum applications with all dependencies.

A. Topology of a Hybrid Quantum Application

Whenever an activity of a workflow is detected to be ready
for execution, the corresponding activity implementation is
invoked by the workflow engine (see Section II-C). This
assumes that the corresponding implementation is avail-
able in (or at least accessible from) the environment [19].
Since an activity implementation (e.g., a Java program)
typically has dependencies on other components (like a
JVM), these components have to be available too - and
in a transitive manner: Only if all these components are
present and intertwined correctly, the activity implementa-
tion can be performed [20]. All the necessary components
and their dependencies are described by a directed acyclic
graph (DAG) [42]. Thereby, the nodes are the components,
and the directed edges are the dependencies between them.
Such a graph is referred to as a topology model or declarative
deployment model respectively [16], [43]. To define such
topology models and automatically provision the described
application, a plethora of provisioning or deployment tech-
nologies, such as Kubernetes, Puppet, Terraform, or Ansible,
have been proposed and are used in practice today [21], [44].
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Figure 3. Exemplary Topology Model.

Additionally, vendor- and technology-agnostic stan-
dards to specify topology models, such as the Topol-
ogy and Orchestration Specification for Cloud Applica-
tions (TOSCA) [45], [46], have been developed to ensure
portability and interoperability between different environ-
ments [16], [22]. Using TOSCA, the topology model of
an activity implementation, or application in general, is
defined using a so-called topology template [45]. Thereby,
the nodes in a topology template are called node templates
and the edges relationship templates. The semantics of node
templates, as well as relationship templates, are defined
by reusable node types and relationship types. Figure 3
depicts an example of a topology template using the graph-
ical notation introduced in [47], whereby the types of the
node templates are shown in braces while types of the
relationships are encoded by their line type. The topology
template shows a possible implementation of the ”Retrieve
Data” activity of the sample workflow from Figure 1 and its
dependencies. The activity is implemented by a Java web
app, which shall be hosted on Elastic Beanstalk, a Platform
as a Service (PaaS) offering from AWS [48]. Furthermore,
the Java web app needs to connect to the MUSE repository
to retrieve the required data (see Section II-B). The database
is managed by a MySQL database management system, that
will be hosted on an Ubuntu virtual machine, which in turn
is created using OpenStack. To enable the configuration of
node and relationship templates, their corresponding types
expose so-called properties that allow setting configuration
parameters. For example, the MUSE repository node tem-
plate in Figure 3 is configured with a username and password
that can be used to access the database after the provisioning.
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Figure 4. Structure of a Quantum Application Archive (QAA).

B. Package of a Hybrid Quantum Application

Hybrid quantum applications are delivered as a single entity
referred to as a quantum application archive (QAA). This
archive is a self-contained package that encompasses all
the artifacts needed to set up the execution environment
required to perform the quantum application. The conceptual
structure of a QAA is depicted in Figure 4. First, this
package contains the topology model describing the compo-
nents and their dependencies. Next, all quantum programs,
as well as all classical programs making up the quantum
application, are included (or pointed to). Additionally, the
workflow model orchestrating the execution of the activity
implementations are in the package, as well as workflow
models that are (re-)used as sub-workflows (like the ”Train
Classifier” sub-workflow realizing a variational quantum
SVM in Figure 1). Finally, some quantum applications like
a machine learning application for training a neural net may
need special data, and such data can also be included in the
package. This way a quantum application becomes an entity
like an app that can be stored somewhere, e.g., in some sort
of a quantum app store, advertised, bought, and so on [6].

C. Provisioning an Execution Environment

Before the quantum application corresponding to a quantum
application archive can be executed, its execution environ-
ment must be set up [49]. The manual provisioning of
all required components is complex, time-consuming, and
error-prone [42]. Therefore, to automate this process, the
topology model of the execution environment is interpreted
by a provisioning engine [21]. In a nutshell, the provisioning
engine interprets the topology model ”from the bottom to the
top”, i.e., starting from the leaves of the topology graph in
the reverse direction of the edges. For each node visited, the
corresponding component or artifact is installed [44].
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For example, in Figure 3, the code of the Java web app
is uploaded to AWS Elastic Beanstalk and the application
provisioning is triggered. In parallel, the virtual machine
for the database is created in the specified OpenStack.
Then, the database management system is installed, the
database is set up, and it is initialized with the data from a
backup. Finally, the connection between the Java web app
and the database is established such that it can access the
database and retrieve data at runtime. Figure 5 depicts that
the provisioning engine interprets a topology model and
provisions the corresponding execution environment. Note
that in analogy to workflows, the interpretation of topology
models for provisioning an execution environment is called
orchestration too - the mental model is again that the
provisioning engine ”orchestrates” all the actions required
to create an execution environment as a whole by deploying
individual artifacts. See [22], [42], [44] for more details
on the automated provisioning of applications, services, or
execution environments using a provisioning engine.

D. Managing an Execution Environment

In addition to the initial provisioning of an execution envi-
ronment, it has to be managed afterwards, which can also
be automated using a provisioning engine [22], [50], [51].
For example, the database in Figure 3 may require periodic
backups, which can be annotated in the corresponding node
of the topology model [50], [52]. Therefore, the provisioning
engine periodically retrieves the database state and persists
it at a defined location. Further, if a new version of the used
database management system is released, the node type in
the topology model can be changed to the new version. Then,
it is automatically updated by the provisioning engine while
ensuring that the state in the database is preserved [52].
Such updates are especially important in the quantum com-
puting domain, where new versions of software tools or
libraries, such as Qiskit, are released frequently [14]. Hence,
the application developer is not in charge of performing
a manual update. Another management task accomplished
by the provisioning engine may be the scaling of some
components of the topology model, e.g. if the workload gets
too high [53]. Finally, the provisioning engine can also be
used to decommission an execution environment after the
quantum application has terminated to save resources [22].
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Figure 6. Overview of a Hybrid Quantum-Classical Runtime Environment.

IV. THE HYBRID QUANTUM-CLASSICAL ENVIRONMENT

The technologies and concepts that have been described
in the previous sections of this paper imply architectural
components of an environment for executing hybrid quantum
applications. In this section, we outline these implications.

A. High-Level Architecture

The high-level architecture of a runtime environment for
hybrid quantum applications is depicted in Figure 6. Every
quantum application includes quantum programs, thus, the
runtime environment has to encompass one or more quantum
processing units (QPUs). Since QPUs are nowadays made
available by means of cloud access [6], [54], it is only
natural to assume that the classical programs of a quantum
application are running in a cloud environment too. Note
that the latter is without loss of generality because workflow
engines can also invoke implementations that run in non-
cloud environments [19]. Having said that, the runtime
environment obviously must contain a workflow engine. To
set up the execution environment for running the imple-
mentations of the activities of the workflow, a provisioning
engine has to be available. Both, the workflow engine as
well as the provisioning engine are also hosted in the cloud.

Consequently, all the artifacts that make up a quantum
application have to be accessible in the cloud. First of all, the
QAAs are needed by the provisioning engine to set up the
execution environment for the activity implementations of
the workflows of the quantum applications. The provisioning
engine will process the QAA of a quantum application
by orchestrating the deployment of the included topology.
During this processing, the quantum programs and classical
programs will be installed, and their prerequisites will be
made available (see Section III-C). Next, the workflow
engine will instantiate the workflow model representing the
quantum application, i.e., the workflow models have to be
part of the overall runtime environment too.
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In addition to the runtime environment, an environment
for specifying the artifacts comprising a quantum application
is needed. Besides tools well-known to quantum program-
mers like a circuit designer, modeling tools for topologies
and workflows are required. Figure 7 shows these compo-
nents of the modeling environment and that the resulting
topologies and workflows can be packaged into a QAA.

B. Running a Hybrid Quantum Application

Figure 8 depicts how the execution of a hybrid quantum
application is kicked off. A corresponding RUN message
defining the name of the workflow Ω and the initial pa-
rameter values p1, . . . , pk to be passed to the newly created
workflow instance is put into a queue (see 1©). This queue
is the entry into the hybrid quantum-classical environment.

A dedicated component, which we refer to as the queue
controller, monitors the queue, analyzes the messages, and
forwards them to the responsible components for further
processing. In our context, the queue controller understands
that the message solicits to instantiate the workflow model Ω
and, therefore, passes a corresponding request to the work-
flow engine (see 2©). The workflow engine will fetch the
workflow model Ω and will create a new instance passing
the parameter values p1, . . . , pk to it as input data (see 3©).

This assumes that the environment needed by the work-
flow for its execution has already been provisioned. To
reduce the monetary costs incurred by cloud resources for
workflows that are only rarely performed, the environment
may be created for each execution of a workflow and can
be decommissioned once the workflow finishes (see Sec-
tion III-D). If a workflow model is instantiated and executed
very often, decommissioning the corresponding environment
and provisioning it over and over again may turn out to be
a significant overhead and should be avoided. However, a
component like a resource manager may be in charge of
the decision when to decommission an environment [55].
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Figure 9. Passing an Application Archive for Immediate Execution.

The above requires that the quantum application archive
has been unpacked before and that its encompassed artifacts
are accessible to the provisioning engine, e.g., stored in the
environment. If this is not intended (e.g., in order to avoid
storage costs), another possibility is a variant of the RUN
message that allows putting a complete quantum application
archive for processing into the queue (see 1© in Figure 9).

In this case, the queue controller will request the
provisioning engine to deploy the quantum application
archive (see 2©) and next request the workflow engine
to run the contained hybrid quantum application. From
outside, this is perceived as a single step [56]: The QAA
will be stored (temporarily) to be able to retry deploying
the QAA in case of errors (see 3©). Next, the archive is
unpacked (see 4©): The quantum programs, the classical
programs, and the workflows are stored such that they
are individually accessible. In step 5©, the provisioning
engine will interpret the topology model of the QAA and
determine all actions needed to set up the execution envi-
ronment required by the hybrid quantum application. Once
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all these actions are performed, the environment needed
by the workflow for its execution is deployed (see 6©).
Afterwards, the main workflow model of the hybrid quantum
application will be instantiated (see 7©) and executed. During
the workflow execution, the workflow engine will invoke
classical programs deployed in the cloud and will kick off
the execution of quantum programs on a QPU (see 8©).

C. Hybrid Quantum Applications and Two Orchestrations
in Superposition

As a consequence, two different kinds of orchestrations are
required to perform a hybrid quantum application as depicted
in Figure 10: (i) The orchestration of the control- and data
flow between the activities of the quantum application, and
(ii) another orchestration of the topology provisioning for
the execution environment required by the workflow to be
executed. The figure also shows that these two kinds of
orchestrations are intertwined [38], [57], they are in a loose
sense in superposition: The orchestration performed by the
workflow engine (the x-axes) goes hand in hand with the
orchestration performed by the provisioning engine (the y-
axes). The workflow engine instantiates the workflow model
and invokes activity A, which requires that implementa-
tion 1© of activity A is properly set up. This setup is
based on the corresponding fragment of the topology of the
overall environment needed by the workflow as indicated
in the figure. Once activity A completed successfully, the
implementation 2© of activity B is started, which assumes
a proper setup corresponding to another fragment of the
overall topology. Finally, activity C’s implementation 3© is
kicked off, and the required setup of this implementation is
specified by yet another topology fragment.

D. Optimization Potentials: Example

The graph-based nature and corresponding operational se-
mantics of (many) orchestration languages support their for-
mal analysis for predictions or improvements, for example.

This offers opportunities for improved support of quantum
programs that iteratively access a quantum computer, such
as implementations of variational quantum algorithms that
are often used today with NISQ devices [2], [58], [59]. The
iterative nature of such an algorithm, i.e., the invocation
of quantum programs in a loop that typically also contains
classical programs, can be detected in a workflow model.

In such a situation, the hybrid quantum-classical environ-
ment may reserve sole access to the quantum computer for
the corresponding quantum application and provide direct
access to the quantum computer without having to submit
requests via the queue (see Section IV-B). This will reduce
the latency of the hybrid quantum application significantly.

V. PROTOTYPICAL VALIDATION

In this section, we first introduce the different components
prototypically realizing the presented architecture of a hy-
brid quantum-classical modeling and runtime environment.
Afterwards, we present the prototypical implementation of
the sample hybrid quantum application depicted in Figure 1.

A. Realizing the Hybrid Quantum-Classical Environment

To verify the sketched architecture of an environment to
model and execute hybrid quantum applications, we in-
troduce our corresponding prototype in what follows. For
modeling the orchestrations of the control- and data flow of
a quantum application, the workflow language BPMN [24]
has been chosen. Thus, the Camunda BPMN workflow
engine [60] and its associated modeling tool [61] can be used
for defining and running the workflows of a hybrid quantum
application. The topologies of the quantum and classical
programs are specified using the TOSCA standard [45].
For this, we utilize the open-source TOSCA modeling tool
Winery6 [62], which is part of the OpenTOSCA ecosys-
tem [63]. The OpenTOSCA ecosystem also comprises the
OpenTOSCA Container7 [64], a TOSCA-compliant provi-
sioning engine, which is used to provision and manage the
execution environments of the hybrid quantum applications.

After modeling the workflows and topologies, all required
artifacts for the hybrid quantum application must be pack-
aged in the QAA. Thus, the workflow models are uploaded
to Winery, from where all artifacts can be exported as a
self-contained Cloud Service Archive (CSAR), the packaging
format defined by the TOSCA standard [45], [65]. This
means QAAs are an extension of CSARs, providing a
self-contained packaging format for quantum applications.
The CSARs can then be uploaded to the OpenTOSCA
Container to provision the execution environment, deploy the
workflows to the Camunda workflow engine, and perform
the binding between the workflows and the execution envi-
ronment. Thereby, the integration of the queue controller into
this toolchain is part of our future work (see Section IV-B).

6https://github.com/OpenTOSCA/winery
7https://github.com/OpenTOSCA/container
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Figure 11. The Topology Model of the Sample Hybrid Quantum Application.

B. Implementation of the Sample Quantum Application

In the following, we discuss implementation details of
the sample hybrid quantum application introduced in Sec-
tion II-B and for which the corresponding workflow is
depicted in Figure 1. Due to space reasons, only some
aspects can be considered, especially just one of the three
sub-workflows contained in the overall workflow. However,
the complete workflow model, the corresponding topology
model, and detailed instructions on how to execute the
hybrid quantum application are available on Github8.

1) Topology Model of the Sample Quantum Application:
Figure 11 shows the topology model of the sample hybrid
quantum application. The first topology stack on the left
comprises the workflow engine used for the execution of the
hybrid quantum application and the corresponding workflow
model. Thus, this stack instructs the provisioning engine to
upload the workflow model to the workflow engine and to
perform the binding between the workflow and the activity
implementations. Thereby, the state of the workflow engine
is set to ”running”, indicating that the workflow engine is
already available in the hybrid quantum-classical environ-
ment and does not have to be deployed by the provisioning
engine. However, it also enables to provision a workflow
engine on-demand by removing this property and adding a
corresponding hosting environment, e.g., a virtual machine.
Finally, the stack can also be removed from the topology
model if the queue controller is available and performs the
upload of the workflow model to the workflow engine.

8https://github.com/UST-QuAntiL/QuantME-UseCases

The second topology stack contains a data preparation
service wrapping the required logic for the first three activ-
ities of the sample workflow (see Figure 1). This service is
implemented as a Python application, and thus, hosted on a
corresponding Python runtime. The Python runtime and the
application are provisioned on an Ubuntu virtual machine,
which is created using OpenStack. Furthermore, the connec-
tion between the workflow and the data preparation service
specifies that the workflow uses the service at runtime and is
configured correspondingly by the provisioning engine [66].
Note that we use a subset of the data from the MUSE repos-
itory that is directly accessible on Github8 and DaRUS [28]
for our prototype. Thus, the data preparation service can
load the data from there, and the database does not have
to be provisioned every time the application is executed.
Hence, the provisioning is more efficient for our sample
quantum application and requires fewer virtual machines.
When running the quantum application in a production en-
vironment, e.g., to classify customer data, the corresponding
database can be added to the topology model as an additional
topology stack. However, in such a scenario, the database is
usually already running, and hence, the provisioning engine
only configures the service to access the database at runtime,
similar to the workflow in the first topology stack.

Additionally, the topology model comprises two stacks
defining a clustering service implementing the different
activities of the ”Compute Cluster” sub-workflow and a
classification service providing the functionality of the two
remaining sub-workflows (see Figure 1). Both services are
implemented using Qiskit and have a corresponding de-

https://github.com/UST-QuAntiL/QuantME-UseCases
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pendency in their topology stack. The Qiskit node has a
connection to an IBMQ node, indicating that it uses QPUs
available over IBMQ for the execution of quantum circuits.
Thereby, the IBMQ node enables to configure the quantum
circuit execution, e.g., by defining the QPU to use or the
access token in the properties [16]. However, otherwise, this
can also be defined using input parameters of the workflow.
Furthermore, Qiskit requires a Python runtime, which is
installed on an Ubuntu virtual machine. For the sake of
simplicity, all virtual machines are created in the same
OpenStack, but the different services could also be hosted
using other cloud offerings, e.g., AWS, as shown in Figure 3.

2) Implementation of the Clustering Sub-Workflow: Fig-
ure 12 depicts the sub-workflow implementing the ”Com-
pute Cluster” activity of the overall workflow. Thereby, the
BPMN [24] concepts and their graphical notation are used.
The sub-workflow can, e.g., be deployed as an independent
workflow model and then invoked by a BPMN call activity
from the overall workflow, or it may also be included
as a BPMN sub-process. For the clustering, the negative
rotation quantum k-means algorithm is implemented by the
workflow (see [33] for details). First, the initial centroids for
the k-means algorithm are determined by a service task, i.e.,
utilizing a classical program. Then, the workflow performs
multiple iterations of quantum and classical processing until
the result converges. Thereby, the angles on the unit sphere
are calculated for the current centroids and the data points
to cluster. Based on the resulting angles, quantum circuits
are generated using another service task. For this, a cor-
responding circuit template is initialized with the angles
as parameters [67], [68]. Next, the circuits are executed
utilizing a so-called quantum circuit execution task, which
is part of a BPMN extension for quantum computing (see
[15], [49]). The results of the quantum circuit executions can
be used to assign the data points to one of the clusters and
to calculate new centroids depending on the assignments.
Finally, the old and the new centroids are compared, and
if the difference is larger than a given threshold, the loop
is executed again, as indicated by the exclusive gateway
in the workflow. When the algorithm converges, the final
assignments of the data points to the clusters are returned.

VI. RELATED WORK

A workflow language can be perceived as a parallel, long-
running, interruptible, persistent, and recoverable program-
ming language (see Section II-A). The instantiation of a
workflow model by a workflow engine ensures these prop-
erties: The workflow engine acts like a virtual machine
properly interpreting the workflow language, just like a
Java Virtual Machine interprets the Java language. Attempt-
ing to use a traditional programming language to realize
“workflows” will thus fail. Consequently, domains in which
workflows play a central role either use an existing workflow
system (i.e., a workflow engine and a matching modeling
tool), or develop a separate workflow system that is targeted
to the particular application domain. Note, that the latter is
a huge endeavor. The use of an existing workflow system
has the advantage that it is mature, proven, robust, etc. [19].

The latter situation occurred, e.g., in the domain of
e-Science [69], [70] where a plethora of workflow sys-
tems (called scientific workflow systems) has been developed,
such as Taverna [71], Pegasus [72], or Kepler [73]. As a
result, workflows are hard to reuse across different domains
of e-Science or various scientific workflow systems because
these systems and their languages used are not standardized.
Further, these workflow systems typically are not abreast in
terms of maturity, etc., with conventional workflow systems.
And it turned out that conventional workflow systems can be
used for modeling and executing scientific workflows either
without any modifications or with a few extensions [74].

In the quantum computing domain, history seems to
repeat. First, workflow systems dedicated to quantum com-
puting appeared in the scientific domain like Nexus [75]. But
also product offerings specialized for quantum computing
like Zapata Orquestra [76] are made available, providing
a proprietary YAML-based language to define quantum
workflows. In this context, too, it turned out that conven-
tional workflow systems can be used for quantum workflows
with only a very few extensions guaranteeing to benefit
from the maturity and robustness of conventional work-
flow systems [15], [49]. Furthermore, by using standardized
workflow languages like BPMN [24], the reuse of workflow
models across different workflow engines is simplified.



Note, that nowadays conventional workflow systems
support one of two standardized workflow languages:
BPEL [77] or BPMN [24], while BPMN is becoming the
dominant language. An overview of related standards and the
concept behind the languages can be found in [23]. Using
one of these two languages eases the reuse of workflows
across supporting workflow engines. Extensions of BPMN
for quantum computing have been proposed in [15], [49] and
have been prototypically implemented based on the open-
source BPMN workflow system Camunda [60], [61].

[57] introduced the concept of self-contained application
archives, especially for the purpose of understandability
and reproducibility of scientific in-silico experiments. This
concept has been realized in [38] introducing self-contained
archives consisting of workflows and all of their dependen-
cies, both, in terms of modeling as well as automatically pro-
visioning the complete environment required by a workflow
for its execution. [43] and [78] propose a similar approach
to define scientific workflows in a self-contained manner to-
gether with their corresponding execution environment. For
this, they utilize the TOSCA standard to specify the topology
for the workflow and directly model the control- and data
flow within this topology by connecting the corresponding
nodes. The resulting topology model is then interpreted
by the TOSCA-compliant Cloudify9 provisioning engine,
which provisions the execution environment and enacts the
workflow. However, the combination of both orchestrations
in the topology model clutters the model and decreases
its understandability. Furthermore, as already discussed, the
features of mature workflow engines, e.g., their robustness,
have then to be implemented in the provisioning engine.

In addition to the provisioning and deployment technolo-
gies presented in Section III-A, new approaches for the
automated provisioning of quantum applications or corre-
sponding extensions for existing technologies were devel-
oped. [16] presents TOSCA4QC, introducing two modeling
styles to define hybrid quantum applications using TOSCA
and to automatically deploy the contained quantum and
classical programs with their dependencies. [79] proposes a
framework for the execution of hybrid quantum algorithms
called algo2qpu. Thereby, it enables the classical processing
of the algorithm within the framework, e.g., the optimization
of parameters for a parameterized circuit, and executes the
resulting quantum circuits on cloud-based quantum comput-
ers. However, the framework does currently not support the
integration with arbitrary classical programs. [80] show how
a quantum program can be packaged with its dependency
as a Docker container and demonstrate their approach with
a prototypical implementation using Qiskit. However, their
approach does not take into account the integration of
the deployed quantum programs with classical programs
required for the execution of hybrid quantum applications.

9https://cloudify.co

VII. CONCLUSION AND OUTLOOK

Most quantum applications are hybrid, i.e., they consist of
both quantum programs and classical programs. This implies
that the control- and data flow between the corresponding
components, as well as their proper deployment, need to be
orchestrated, and both orchestrations must be intertwined.
We elucidated this by means of a real-world use case from
the domain of the humanities. In order to treat hybrid quan-
tum applications as a self-contained entity, we introduced the
quantum application archive (QAA) that comprises all the
artifacts of a quantum application, as well as all the required
information for their processing, in a single package. The
need for proven workflow technology to orchestrate the flow
between the components of a quantum application, and the
use of provisioning technology to orchestrate the topology
of a quantum application, has been argued for. We sketched
the high-level architecture of a runtime environment for
quantum applications and especially revealed the role of
a workflow engine and a provisioning engine in such a
runtime. Furthermore, the need for a workflow modeling
tool and a topology modeling tool as components of a build
time environment for hybrid quantum applications have been
mentioned. Finally, the sketched architecture was verified
by a prototypical implementation based on the Camunda
workflow system and the OpenTOSCA ecosystem.

In future work, we plan to further extend the presented
prototype. Thereby, especially the integration between the
queue controller on one side and the workflow engine and
provisioning engine on the other side is still open. The same
is true for the indicated optimization to reserve a quantum
computer to a quantum application for multiple iterations,
e.g., for variational algorithms. Additionally, we will inves-
tigate how the modeling of hybrid quantum applications
can be supported by suited extensions of the workflow
and topology modeling tools. Finally, we plan to develop
workflow models implementing other quantum algorithms,
such as QAOA [59] or VQE [81], and provide them in
a workflow repository to enable their integration as sub-
workflows into workflows solving higher-order problems.
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[47] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and
D. Schumm, “Vino4TOSCA: A Visual Notation for Appli-
cation Topologies based on TOSCA,” in On the Move to
Meaningful Internet Systems: OTM 2012 (CoopIS). Springer,
2012, pp. 416–424.

[48] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” 2011.

[49] B. Weder, J. Barzen, F. Leymann, and M. Salm, “Automated
Quantum Hardware Selection for Quantum Workflows,” Elec-
tronics, vol. 10, no. 8, 2021.

[50] L. Harzenetter, U. Breitenbücher, F. Leymann, K. Saatkamp,
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