
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{weigold, barzen, breitenbuecher, falkenthal, leymann, wild}@iaas.uni-stuttgart.de

Pattern Views: Concept and Tooling for
Interconnected Pattern Languages

Manuela Weigold, Johanna Barzen, Uwe Breitenbücher, Michael Falkenthal,
Frank Leymann, Karoline Wild

@inproceedings{Weigold2020_PatternViews,

author = {Weigold, Manuela and Barzen, Johanna and Breitenb{\"u}cher, Uwe

and Falkenthal, Michael and Leymann, Frank and Wild, Karoline},

title = {{Pattern Views: Concept and Tooling of Interconnected Pattern

Languages}},

booktitle = {Proceedings of the 14th Symposium and Summer School on

Service-Oriented Computing (SummerSOC 2020)},

pages = {86--103},

publisher = {Springer International Publishing},

month = dec,

year = 2020,

doi = {10.1007/978-3-030-64846-6_6}
}

:

Institute of Architecture of Application Systems

© Springer Nature Switzerland AG 2020
This is a post-peer-review, pre-copyedit version of an article published in
Proceedings of the 14th Symposium and Summer School on Service-Oriented
Computing (SummerSOC 2020), part of the CCIS book series. The final
authenticated version is available online at: https://doi.org/10.1007/978-3-
030-64846-6_6

Pattern Views:

Concept and Tooling for Interconnected

Pattern Languages

Manuela Weigold[0000−0002−4554−260X], Johanna Barzen[0000−0001−8397−7973],

Uwe Breitenbücher[0000−0002−8816−5541], Michael Falkenthal[0000−0001−7802−1395],

Frank Leymann[0000−0002−9123−259X], and Karoline Wild[0000−0001−7803−6386]

Institute of Architecture of Application Systems,

University of Stuttgart, Universitätsstrasse 38, Stuttgart, Germany

[firstname.lastname]@iaas.uni-stuttgart.de

Abstract. Patterns describe proven solutions for recurring problems. Typically,

patterns in a particular domain are interrelated and can be organized in pattern

languages. As real-world problems often require to combine patterns of multi-

ple domains, different pattern languages have to be considered to address these

problems. However, cross-domain knowledge about how patterns of different pat-

tern languages relate to each other is mostly hidden in individual pattern descrip-

tions or not documented at all. This makes it difficult to identify relevant patterns

across pattern languages. To address this challenge, we introduce pattern views

(i) to document the set of related patterns for a certain problem across pattern

languages and (ii) to make this knowledge about combinable patterns available

to others. To demonstrate the practical feasibility of pattern views, we integrated

support for the concept into our pattern toolchain, the Pattern Atlas.

Keywords: Patterns · Pattern Languages · Cross-Language Relations · Pattern

Language Composition · Pattern Graph.

1 Introduction

Patterns describe proven solutions for recurring problems. After the first patterns were

published in the domain of city and building architecture by Alexander et al. [1], the

concept of patterns has been adopted in various other fields. Especially in software and

information technology, publishing patterns has become a popular way to convey ex-

pert knowledge in different domains, e.g., object-oriented programming [2], enterprise

application architecture [3], messaging [4], or security [5]. Since patterns can often

be used in combination or offer alternative solutions, the relations between patterns

are essential for identifying all relevant patterns and are therefore often documented.

For example, the pattern Public Cloud of the cloud computing pattern language by

Fehling et al. [6] describes how cloud providers can offer IT resources to a large cus-

tomer group. It further refers to patterns that describe the different service models for

offering resources, e.g., as Infrastructure as a Service (IaaS) [6]. When using the Pub-

lic Cloud pattern, those related patterns should also be considered, because they solve

2 Weigold et al.

related problems. In conjunction with the relations between them, patterns can be or-

ganized in pattern languages [1]. As a result, a pattern language describes how patterns

work together to solve broader problems in a particular domain [7].

However, real-world problems often require the use of patterns of different do-

mains. However, in many cases not all relevant patterns belong to the same pattern

language. Therefore, some authors include relations to other languages. For example,

in the cloud computing pattern language [6], the authors state that the message queues

of the Message-oriented Middleware pattern are introduced by Hophe & Woolf’s [4]

Message Channel pattern. Unfortunately, not all relevant pattern languages are referred

to. Many pattern languages refer only to a few related patterns of other languages or

none at all. For example, distributed cloud applications typically have to meet security

requirements regarding the communication of the distributed components. To ensure se-

cure communication, Schumacher et al.’s [5] Secure Channel pattern could be applied.

However, this pattern language is not mentioned in the cloud computing patterns at all

[6]. As relations to other pattern languages are often missing, it is difficult to identify

related patterns of other languages.

One reason for missing relations is the way pattern languages are documented. Most

pattern languages are published in books or scientific publications. Once they are pub-

lished, they can hardly be changed and, therefore, the pattern languages remain static.

This was not intended by Alexander et al. [1], who described them as “living networks”.

Some authors created dedicated websites for their pattern languages (e.g., [8,9,10]),

which eases their adaptation. Nevertheless, most websites represent only one particular

language. For this reason, pattern repositories have been developed that aim to col-

laboratively collect patterns of various domains and provide tooling support to edit or

extend patterns and relations. Although several pattern repositories support the collec-

tion of patterns, patterns of different domains are not organized in pattern languages

(e.g., [11,12]) and are thus treated as a single set of patterns and their relations. In

contrast to that, a pattern language is more than a collection of patterns and reflects the

higher-level domain for which the patterns are relevant [13], e.g., for realizing cloud ap-

plications. A few repositories organize patterns in pattern languages (e.g., [14,15]), but

do not reflect explicit cross-domain relations between patterns in different languages.

This knowledge is hidden in individual pattern descriptions. However, without explicit

cross-domain relations, and without the context in which these relations are relevant,

it is difficult to identify relevant patterns for a given problem. This leads to the overall

research question: “How can relevant patterns and their relations be identified for a

problem across different domains?”

In this paper, we address this problem by introducing a concept to explicitly docu-

ment cross-domain knowledge relevant for a particular problem. For this, patterns and

their relations from different pattern languages can be selected and further relations can

be defined as relevant in a specific context. The relations between patterns of different

languages are cross-language relations that express cross-domain knowledge, i.e. rela-

tions between patterns of different pattern languages. Thus, it is possible to combine

and extend pattern languages – a truly living network of patterns. Based on our pre-

vious experience with pattern repositories, we show how support for the concept can

be integrated into a pattern repository by adapting our previous toolchain [16,17,18]

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 3

which we refer to as the Pattern Atlas [19]. The remainder of the paper is structured as

follows: Section 2 describes fundamentals and a motivating scenario. In Section 3, we

introduce our concept and show how tooling support for it can be integrated into a pat-

tern repository. In Section 4, we present a concrete use case and describe the realization

of our prototype. Section 5 describes related work and is followed by a discussion in

Section 6. Finally, Section 7 concludes the paper.

2 Background and Motivation

In this section, we first introduce patterns and pattern languages and then motivate that

for real-world problems often patterns from multiple domains have to be considered.

Based on the motivating scenario, we further refine the research question.

2.1 Patterns and Pattern Languages

As already mentioned, patterns are used to gather knowledge about proven solutions for

recurring problems in many different fields, especially in the domain of software and

information technology [7] but also in humanities it is a common concept [20]. They de-

scribe the core idea of the solution in a general manner, which means in case of software

engineering patterns that they are independent of a specific technology or programming

language. The general solution concept of a pattern can therefore be applied to a va-

riety of use cases in different ways. Each pattern is identified by its name which we

write in italics throughout this paper. Since humans are the targets, patterns are docu-

mented as textual descriptions according to a defined pattern format. Even if the pattern

formats differ slightly from pattern language to pattern language [21], typical formats

for patterns in software and information technology domains contain several common

sections [22]: A section about the addressed problem, the context in which the problem

might arise, forces which direct the problem, the proposed solution, the resulting con-

text describing which forces have been resolved, and a section showing a sketch of the

solution. Often other patterns are only referenced in the textual description of one of

these sections. Some authors have introduced explicit sections to describe the relations

of the pattern and give them defined semantics [23], such as “Variations” [6,9], “See

also” [5], or “Next” [4]. Further examples of semantics for relations between patterns

can be found in [24,25,26].

Patterns and relations are the basic building blocks of pattern languages. In this

work, we build on the premise that a pattern language is more than a collection of

patterns, but a designed system [27]. This means that (i) relations of a pattern language

are designed to guide the reader towards suitable patterns and (ii) each pattern solves

a specific problem that is related to the overall context of the pattern language [28,13],

e.g., in the domain of cloud computing, enterprise integration, or security.

2.2 Motivating Scenario and Problem Statement

Often patterns of several domains have to be considered for a real-world problem. For

example, suppose a software developer wants to build a secure elastic cloud applica-

tion. An elastic application responds to changing workload by adjusting the amount of

4 Weigold et al.

Processing

Component

User Interface

Stateless

Component

Elastic

Queue

Message-

oriented

Middleware

Competing

Consumer

Point-to-Point

Channel

RRD

Message

Dispatcher

Data

Obscurity

DO

SC

Secure

Channel

Authorization

A

Role-right

Definitions

RAC

Role-based

Access control

MLM

Multi-level

Model

RM

Reference

monitor

Command

Message

…

…

…

…

Cloud Computing Enterprise Integration Security

Polling

Consumer

Event-Driven

Consumer

Remote

Procedure

Invocation

C

Data

Abstractor

Node-based

Availability

Elastic

Platform

Elastic

Infrastructure

Fig. 1. Patterns and their documented relations of multiple pattern languages: Cloud computing

patterns [6], enterprise integration patterns [4], and security patterns [5].

resources allocated to the application [6]. This ensures that neither too many resources

(which is costly) nor too few resources are allocated over a long period.

The cloud computing patterns in Figure 1 on the left provide several patterns rel-

evant for an elastic cloud application: For example, an Elastic Infrastructure provides

a dynamically adjustable infrastructure to a customer to deploy an application and an

Elastic Queue can be used to monitor the number of messages in a queue and to ad-

just the number of Processing Components handling the requests. In the context of an

elastic cloud application, the Processing Components are often implemented as Com-

peting Consumers as any of the instances can receive and process an incoming request.

Therefore, this enterprise integration pattern is explicitly referred to in the Processing

Component pattern. Since messaging is often used for integrating cloud application

components, several cloud computing patterns also refer to other enterprise integration

patterns. For example, the authors state that the Message-oriented Middleware pattern

summarizes selected enterprise integration patterns that are not explicitly listed. How-

ever, often explicit references to related pattern languages would be helpful. An exam-

ple of missing cross-language relations can also be found in our motivating scenario:

The enterprise integration patterns were published before the cloud computing patterns

and thus never reference them. And although most elastic cloud applications must meet

certain security requirements, such as secure communication between application com-

ponents, as provided by the Secure Channel pattern of the security patterns, no security

patterns are mentioned and, thus, no cross-language relations exist. It can easily be seen

that cross-language relations are also important for pattern languages of other areas than

software, e.g., for realizing a film scene, patterns from different domains (costumes,

music, and film settings) are needed [26].

But even if cross-language relations exist, they are often not properly documented.

The pattern languages depicted in Figure 1 are published in books [6,4,5] or on dedi-

cated websites [8,10]. Besides scientific publications and dedicated websites, patterns

are published in repositories that aim to collect patterns in collaboration [16]. However,

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 5

even with the tooling support of current repositories, it is challenging to find related

patterns for a given problem: Several repositories do not organize patterns in pattern

languages [11,12] and treat patterns only as a simple interconnected set. Thus, the do-

main of the pattern language is not visible and cannot serve as an entry-point for the

reader. The few repositories organizing patterns in pattern languages [16,14] list cross-

language relations in individual pattern descriptions which are therefore not obvious.

None of the repositories known to us enables to document patterns and relations for

a specific context (e.g., secure elastic cloud applications). Consequently, finding suit-

able patterns across pattern languages for a certain problem is a cumbersome, manual

process. And especially if a large number of patterns must be considered, this process

can be time-consuming. For example, the cloud computing pattern language comprises

74 patterns while the enterprise integration pattern language consists of 65 patterns.

Among these patterns, often only a subset is relevant for a certain problem. In Section 1,

we questioned how this subset and their relations can be identified across different do-

mains. The domain of the problem may be addressed by either one or multiple pattern

languages. In this work, we focus on pattern languages as they also define sophisticated

relations and we do not consider simple pattern collections. As a result, the research

question can be reformulated as follows:

Research Question I: “How can relevant patterns in one or more pattern lan-

guages be identified for a certain problem?”

The main purpose of patterns and pattern languages is to document knowledge. The

additional knowledge about which patterns and relations are relevant for a particular

cross-domain problem area is also worth documenting. Especially if multiple pattern

languages have to be considered, it can be beneficial to share and extend this knowledge

in collaboration. Therefore, a second question can be derived from the original question:

Research Question II: “How can this knowledge about relevant patterns be doc-

umented in a reusable manner?”

To address these questions, sufficient tooling support is needed to document this knowl-

edge that may span different pattern languages. As mentioned earlier, documenting pat-

terns and relations for a specific problem is currently not supported by any existing

pattern repository known to us.

3 Pattern Views

In this section, we introduce our concept and tooling support to tackle the research

questions introduced in Section 2. First, we introduce pattern views as a concept to

document cross-domain knowledge for a particular context that requires patterns and

relations across pattern languages. A pattern view can then be used to identify relevant

patterns for the problem that is defined by the context of the pattern view (Research

Question I). Then, a formal definition of pattern views is given. Finally, the integration

of pattern views in a pattern repository is shown (Research Question II).

6 Weigold et al.

view-specific relation

𝑃1

𝑃5
𝑃3

𝑃14
𝑃8 𝑃9
𝑃13

𝑃10
𝑃12
𝑃7

Pattern View 1

𝑃2
𝑃6 𝑃4

Pattern Language BPattern Language A

𝑃11
𝑃15 𝑃16

Pattern View 2

native (inner-language) relation cross-language relation

Fig. 2. The concept of pattern views: Pattern views can contain patterns of either multiple pattern

languages (pattern view 1) or one single pattern language (pattern view 2).

3.1 The Concept of Pattern Views

Alexander et al. [1] already mentioned in the publication of the first pattern language

that if a certain problem requires patterns of different pattern languages, patterns of

different domains can be combined as needed. Based on this idea we introduce pattern

views as a concept (i) to explicitly define the context in which a set of patterns and

relations is relevant, (ii) to specify new relations between patterns that are relevant in

this specific context, and (iii) to preserve knowledge about the pattern languages from

which the patterns originate.

Figure 2 illustrates our concept: A pattern view comprises patterns of either dif-

ferent pattern languages (pattern view 1) or a single pattern language (pattern view 2).

For example, patterns from different languages are relevant for a secure elastic cloud

application, while only a subset of the cloud computing patterns are relevant for the

deployment of a cloud application. The relations between the contained patterns in a

pattern view are either those already defined in the original language or newly defined

relations that are relevant in the defined context of the pattern view. We distinguish be-

tween (i) native relations, which are inner-language relations defined by a pattern lan-

guage, (ii) cross-language relations, which are either described in a pattern language or

newly introduced by a pattern view, and (iii) view-specific relations, which are newly in-

troduced inner-language relations. Especially cross-language relations are often poorly

documented in pattern languages. The relevance of a pattern view for a certain use case

is determined by its context: The context guides the pattern users, e.g., software archi-

tects, to identify a pattern view for his or her particular problem. Thus, pattern views

enable to document knowledge about the joint use of patterns and pattern languages for

a particular problem explicitly and reusable for other users. In Section 4.1, a pattern

view containing patterns relevant in the context of secure elastic cloud applications is

described in detail as a sample. As a result, an individual pattern can be considered

from different perspectives: It is primarily anchored in its original pattern language,

but can also be part of different views that place the pattern in a specific context of

an overarching problem. As a pattern view can reuse and extend the existing structure

of underlying pattern languages, new structures emerge. This supports one aspect of

Alexander’s living network of patterns which allows constant change.

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 7

The term pattern view is inspired by two existing concepts in computer science: In

database management systems, database views can be used to represent subsets of data

contained in regular tables. They can join, aggregate, or simplify data from multiple

tables and represent them as a single virtual database table. For patterns, the same can

be done by our pattern views: Patterns from multiple sources (pattern languages) can

be included in a single pattern view. New relations for the pattern view can be defined,

just like a database view can refer to other tables. Another analogy to pattern views

is the notion of architecture views in architecture descriptions [29]. An architecture

view represents the architecture of a system from a specific viewpoint that is in accor-

dance with a certain set of stakeholders’ concerns [29]. Depending on the concerns of

the different stakeholders, a suitable architecture description can be created, e.g. a pro-

cess view for process architects or a software distribution view for software developers.

Avgeriou & Zdun [30] use this definition to assign architectural patterns to their primary

architectural view, e.g., the Client-Server pattern to the component-interaction view. We

go beyond this and define pattern views as a representation of pattern languages based

on problem scopes. Such a scope of a pattern view represents the context in which the

patterns and pattern languages may be used to address the concerns of the pattern user.

In Section 4.1, we present a pattern view for secure elastic cloud applications that is

aimed towards cloud software architects and contains several patterns for the integration

of the application components. Although our work is based on information technology

pattern languages, our concept does not rely on specific properties of patterns of this

domain. Therefore, our concept may be applied, e.g., to patterns for costumes [31] or

building architecture [1] in the future.

3.2 Formalization of Pattern Views

Being composed of patterns and relations, pattern languages are commonly formalized

as graphs [23,7,32,33]. This notation is also used in Figure 2 for the pattern languages

A and B: Patterns are represented by nodes, and edges define the relations between

them. Some authors assume a hierarchical ordering of the patterns and restrict the graph

to be acyclic [1,7,13]. Because in practice arbitrary relations are used in pattern lan-

guages [23], we do not enforce hierarchical ordering. Therefore, we allow cyclic edges

in our definition of a pattern language graph that is based on our previous work [23]:

Definition 1 (Pattern Language). A pattern language is a directed, weighted graph

G = (N,E,W) ∈ G, where G is the set of all pattern languages, N is a set of patterns,

E ⊆ N × N × W is a set of relations, and W is a set of weights used to reflect the

semantics of the relations between patterns. Thereby applies that W ⊆ W where W is

the set of all ”meaningful“ weights.

In our concept introduced in Section 3.1, we distinguish three kinds of relations between

patterns for which we formally define three categories of relations:

Definition 2 (Pattern Relation Categories). Let G = (N,E,W) ∈ G. Then e ∈ E

is called native relation (more precisely G-native relation). With Ĝ = (Ĝ, Ê, Ŵ) ∈ G

(Ĝ 6= G), (n, n̂, w) ∈ N × N̂ ×W is called cross-language relation (more precisely

cross-(G, Ĝ) relation). Finally, (n, n′, w) ∈ (N × N × W) \ E (n 6= n′) is called

view-specific relation (more precisely view-G-specific relation).

8 Weigold et al.

Note that these categories are mutually exclusive. Relations of all three categories can

be part of a pattern view which is defined as follows:

Definition 3 (Pattern View). A graph (P,R, S) is called pattern view: ⇔ ∃H ⊆ G :

(i) P ⊆
⋃

(N,E,W)∈H

N

(ii) R = Rn ∪Rc ∪Rs with

(a) ∀e ∈ Rn ∃G ∈ H : e is G-native

(b) ∀e ∈ Rc ∃G, Ĝ ∈ H : e is cross-(G, Ĝ)

(c) ∀e ∈ Rs ∃G ∈ H : e is view-G-specific

(iii) S ⊆ W

While both pattern languages and pattern views are directed graphs and thus structurally

similar, pattern views reuse selected structures of pattern languages (patterns and native

relations) and extend by view-specific relations and cross-language relations.

3.3 Tooling for Pattern Views

In previous works, our toolchain has been introduced as a collaborative tool for doc-

umenting and managing patterns and pattern languages [16], as well as concrete solu-

tions [34,18] that are implementations of the patterns with a particular technology or

in a particular programming language in case of software engineering patterns. Pattern

research is actively supported as experts can analyze concrete solutions in collaboration

and as a result identify best practices and document patterns [16]. Based on an analogy

to cartography we refer to our toolchain as the Pattern Atlas [19].

Figure 3 illustrates the abstract architecture of the Pattern Atlas with the newly de-

veloped components in black. In the pattern repository, patterns and relations between

them are managed. The patterns as well as their relations are organized in pattern lan-

guages. The metadata defines the pattern formats for the different pattern languages

as well as the semantics of the relations. Analogously, the solution repository stores

concrete solutions and their relations, which are organized in solution languages. Con-

crete solutions are related to patterns: While a pattern captures the essence of multiple

concrete solutions, the documentation of a concrete solution eases the application of

its pattern to a specific problem [17]. In addition, aggregation descriptors are stored

that specify how different concrete solution artifacts can be combined [17]. These com-

bined solutions are especially relevant if multiple patterns (and thus their concrete so-

lutions) need to be applied to a broader problem. The solution repository for managing

solution languages highly depends on the domain of the solution, e.g., for concrete so-

lutions of costumes detailed descriptions of clothing pieces are relevant [35] whereas

solutions of software patterns can be code snippets [16]. The repositories facilitate to

add patterns and solutions as textual descriptions and browse the pattern languages as

well as solution languages. For this work, we enriched our previous realization of the

toolchain [16,34,18] by the concept of pattern views and added a graphical editor. Fur-

ther details of the implementation are described in Section 4.

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 9

Patterns

Pattern RepositorySolution Repository

Concrete

Solutions
Relations

Pattern Atlas

Aggregation

Descriptors

View

Definitions

Pattern Languages Pattern ViewsSolution Languages

Metadata

Editors

Graphical Editor:

Pattern Languages & Views
Text Input Browser …

Fig. 3. Abstract system architecture of the Pattern Atlas.

4 Case Study and Prototypical Implementation

In our motivating scenario described in Section 2.1, we stated that patterns from multi-

ple domains are needed for realizing a secure elastic cloud application. In this section,

we first present a case study with the pattern view for the context of secure elastic cloud

applications. We then describe our prototypical implementation which can be used to

facilitate the documentation of a pattern view.

4.1 Case Study

Users expect a high availability of certain applications. To fulfill this expectation, cloud

providers offer infrastructure and services that can be used to guarantee the availability

of an application even for a sudden increase in demand, i.e. scalability of the services.

Elastic cloud applications deal with changing demand by adjusting the amount of re-

sources that are used for the application [6]. In addition, data security plays a major

role, especially when data is exchanged between communication partners.

Figure 4 depicts the architecture of a secure elastic cloud application. The ap-

plication consists of a User Interface component that communicates with Processing

Components via messaging. Both components are hosted on an Elastic Infrastructure.

The number of messages in the channel is monitored to determine the workload of the

Processing Component instances. Depending on the number of messages, the Elastic

Queue adjusts the number of instances. As any Processing Component instance can

answer a request, the component is implemented as Stateless Component and its in-

stances act as Competing Consumers listening on a Point-to-Point channel provided by

a Message-Oriented Middleware. After consuming and processing a message the Pro-

cessing Component instance can send a response via another Point-to-Point Channel.

To ensure data security, the communication between the component must be encrypted.

For such an application, there is a number of patterns that should be taken into

account during implementation. In Figure 5, the pattern view for secure elastic cloud

10 Weigold et al.

User Interface

Message-

oriented

Middleware

Elastic

Queue

Number of

messages

scale

Processing

Components

Secure

Point-to-Point

Channel

Competing Consumers

Elastic

Infrastructure

Elastic

Infrastructure

hosted

on
hosted

on

provided

by

Fig. 4. Architecture of a secure elastic cloud application.

applications is shown. It includes patterns from the cloud computing, enterprise inte-

gration, and security pattern languages that are relevant in this specific context. Besides

native relations and one cross-language relation from the original pattern languages,

three new cross-language relations and two view-specific relations are contained in the

pattern view. In addition to the already named patterns also a Message Dispatcher can

be used to delegate the message to one specific consumer, i.e. one Processing Compo-

nent instance. Each Competing Consumer can be implemented as Polling Consumer,

Event-Driven Consumer, or a combination of both [4]. A Message-oriented Middle-

ware provides the functionality for communication via messaging and therefore also

the secure message channels for the Competing Consumer instances. To ensure that a

message is consumed only once, the consumers must all listen to the same Point-to-

Point Channel. As all transferred data of the application must be encrypted, the Point-

to-Point Channel must also implement the Secure Channel pattern. Once defined, this

pattern view can be used by other cloud application architects to realize their secure

elastic cloud applications. Since the existing knowledge is only enriched by the pattern

views, further relevant patterns outside the view can be identified by the native relations

in the pattern languages.

4.2 Prototypical Implementation

In the course of this work, we not only extended the pattern repository conceptually but

also refactored the implementation of our previous toolchain. The user interface of the

pattern repository was implemented as an Angular frontend1 and we used Spring Boot

for implementing a RESTful backend2.

1 https://github.com/Pattern Atlas/pattern-atlas-ui
2 https://github.com/Pattern Atlas/pattern-atlas-api

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 11

Message

Dispatcher

Processing

Component Competing

Consumer

Point-to-Point

Channel

User

Interface

Stateless

Component

Elastic

Queue

Elastic

Infrastructure

Elastic

Platform

Secure

Channel

SC

Message-

oriented

Middleware

Polling

Consumer

Event-driven

Consumer

Node-based

Availability

Data

Abstractor

…

…

Remote

Procedure

Invocation

Command

Message

…

…

Reference

monitor

RM

…
Security

Enterprise IntegrationCloud Computing

…

C

view-specific relationnative (inner-language) relation cross-language relation

Fig. 5. Pattern view for secure elastic cloud applications.

In the pattern repository, patterns are created in the scope of a pattern language that

specifies a certain pattern format. After the creation of a pattern, it can be added to a

pattern view. For both, pattern languages and pattern views, we implemented a graphical

editor that visualizes their graph structure. In Figure 6, this is shown for the pattern view

presented in Section 4.1. Patterns from all pattern languages of the repository can be

added via drag and drop. The layout of the graph can be adapted by re-positioning

nodes, zooming in and out, and triggering an automatic reformatting of the graph based

on the edges. After the selection of a pattern, related patterns are highlighted. New

relations can be added by drawing arrows between two pattern nodes and are further

defined by a description and specification of the relation type. These new relations are

either cross-language relations or view-specific relations. Users can therefore directly

edit or interact with the visualized pattern graph and observe how new relations or

patterns lead to structural changes as the overall structure of the network of patterns

can be grasped immediately. For pattern views, native relations of a pattern can be

displayed and selectively imported into the pattern view. This enables the user to reuse

the structure that is defined by relations in a pattern language.

5 Related Work

Several authors have examined relations and patterns across multiple pattern languages.

Avgeriou & Zdun [30] reviewed architectural views and patterns from different lan-

guages. They assigned each architectural pattern to its primary architectural view and

defined relations between the patterns. As each of their collection of patterns and rela-

tions for an architectural view is worth documenting, we adopted the idea of views as a

concept that is not limited to the domain of IT architecture. Caiza et al. [36] standardize

the relations of various privacy pattern languages to combine them into a new pattern

12 Weigold et al.

Fig. 6. The secure elastic cloud applications view in the graphical editor. Via drag & drop (left

side of the figure), patterns from pattern languages can be added to the pattern view.

language. Porter et al. [32] derived a method to combine pattern languages based on

pattern sequences. In contrast, pattern views contain only those patterns of different

languages and their relations that are relevant in a certain context. Thus, pattern views

are more specific and less complex than potentially large combined pattern languages.

Buschmann et al. [37] introduce pattern stories as textual descriptions that walk a

reader through the application of multiple patterns. In an exemplary pattern story, they

demonstrate how patterns of multiple languages are used together. The information that

is contained in a story - the patterns and the relations described in it - can also be

captured in pattern views. However, pattern stories are targeted at illustrating common

pattern sequences. Pattern views are not limited to express sequential steps but can

express arbitrary relationships.

Reinfurt et al. [38] present an algorithm for finding entry points in pattern languages.

Their algorithm can be used to support several manual steps that are needed to document

pattern views: For a formalized set of problems related to the context of the pattern view,

their algorithm suggests suitable languages and a pattern that serves as a starting point.

Köppe et al. [39] elaborated on requirements for online pattern repositories. They

used the term pattern views in the sense that there should be different options (pat-

tern views) for displaying a pattern, e.g., for smaller screens or optimized for printing.

Their notion of a pattern view, therefore, defines the visual representation of a pattern

whereas we use the term pattern view for a concept to encompass patterns and relations

that are relevant for a particular context. Apparently similar terms from other domains

are process views and process viewing patterns [40]. Process views are used to repre-

sent a complex business process regarding certain aspects, e.g. by reducing the process

to its essentials parts [40]. They are obtained by applying transformations on the pro-

cess graph of the business process [41]. These transformations have been described by

process viewing patterns [40]. In contrast to pattern views that are created by selecting

suitable nodes (patterns) and redefine the relations (edges) between them, the former

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 13

transformations can be far more sophisticated, e.g., nodes of a process graph can be

aggregated.

Pavlič et al. [42] introduced the concept of pattern-containers to represent pattern

collections. They formalized how patterns represent knowledge in an ontology. Rela-

tions are modeled by specifying that a pattern is related to another pattern. But in their

ontology, the relation cannot be described further, and thus, the type of the relation can-

not be defined. They define pattern-containers as a way to create pattern collections:

Pattern-containers can include patterns and other pattern-containers. A pattern can be

included in multiple pattern-containers. But given their ontology, pattern-containers

cannot be used to represent pattern views: As it cannot be defined which relations are

relevant for a pattern-container, they represent a simple subset of patterns.

Graph-based representations for pattern languages are commonly used to reflect

Alexander’s description of a network of patterns [37,23,33]. Another pattern repository,

The Public Sphere Project, mentions that a graph representation of all their patterns and

relations was once created [14], but only a sub-graph of it (8 patterns and their relations)

can still be found on their website. Nevertheless, even the complete graph is still a static

representation of their underlying living pattern network. Schauer & Keller [43] devel-

oped a tool for documenting software systems. Although they use patterns to enhance

multiple graph-based views for a software system (e.g. as annotations in UML dia-

grams), they do not offer a general view on patterns. Welicki et al. [44] developed a vi-

sualization tool that can be used to search and create relations (including cross-language

relations) between patterns in their software pattern catalog. They also implemented dif-

ferent views on a pattern that display e.g. a summary or software-specific views (e.g.

source-code of a concrete implementation). The MUSE repository of Barzen [45] offers

a graph-based representation of concrete costumes that occur in films and are under-

stood as concrete solutions for costume patterns. However, these tools and repositories

do not offer different perspectives on the relations of the patterns or pattern languages.

Therefore, no other pattern repository or tool known to us offers graph-based repre-

sentations of pattern languages and the ability to dynamically combine patterns from

different languages to pattern views for a particular problem context.

6 Discussion

Once a pattern view has been documented for a particular problem, the (cross-domain)

knowledge about the patterns is made explicit. When initially documenting a pattern

view, expert knowledge or experience in the domain of the corresponding pattern lan-

guages is required. While this is an additional manual step, it enables other users of the

pattern repository to reuse and extend the knowledge captured in the pattern view. In

future work, the documentation of pattern views could be further simplified by further

tooling support that, e.g., suggests related patterns.

In contrast to pattern languages, patterns of a pattern view can belong to differ-

ent pattern languages. Thus, independent of the underlying pattern format, each pattern

can be integrated into a pattern view. However, since the patterns are unchanged, their

pattern descriptions may use different terminologies. For example, the patterns of the

pattern view in Section 4.1 use either “message channel” [4] or “message queue” [6]

14 Weigold et al.

to describe the same concept. This is due to the fact that the overall context of the pat-

tern language is not the same: Hohpe & Woolf [4] describe solutions in the context of

integrating enterprise applications via a shared message-based communication channel,

called message channel. Fehling et al. [6] use the term message queue in the context of

cloud computing to emphasize that multiple messages are stored in a queue and can be

retrieved by one of the multiple receivers. This behavior of the message queue can be

used for scaling as discussed in Section 4.1. Besides the differences in the overall con-

text (or domain) of a pattern language, pattern primitives may be used inconsistently by

different pattern authors [46]. Pattern primitives are fundamental elements of patterns

and can be used as common elements in patterns [47]. However, in the future, the ap-

proach may be extended to adapt or standardize pattern descriptions in the context of a

pattern view.

Finally, we want to point out that our approach is not based on specific properties of

software patterns and, thus, seems to be applicable to pattern languages of other areas.

7 Conclusion and Future Work

In this paper, we introduced the concept of pattern views to explicitly document cross-

domain knowledge relevant for a particular problem context. Patterns from either differ-

ent pattern languages or a single pattern language relevant for a specific problem can be

combined into a so-called pattern view. In addition to the patterns and native relations

of the underlying pattern languages, view-specific relations can be defined if neces-

sary and cross-language relations can be documented as relevant for the given context.

Therefore, cross-domain knowledge expressed by these relations is documented explic-

itly and within a meaningful context.

We extended the implementation of our pattern repository that was presented in

previous works [19,16,17] by the concept of pattern views. Therefore, our repository

allows to collect multiple pattern languages and to define pattern views that can com-

bine, reuse, and extend the structure of pattern languages that are given by their patterns

and relations. Our repository also offers a graph-based representation for pattern views

and pattern languages that visualizes the network of patterns. We plan to collect further

pattern languages in the repository, such as Internet of Things patterns [48] or green

IT patterns [49] and to extend our collection of pattern views. We will further evaluate

if some patterns need to be adapted to be used in the context of a pattern view. For

future research, we will especially consider patterns from new research areas such as

music [50] or Quantum Computing [51]. Patterns for quantum computing are especially

interesting as new technologies need to be integrated into our current software systems

(for which we already have patterns at hand). Also, an open access hosting of the pattern

repository would offer multiple advantages in the future.

Acknowledgment

This work was partially funded by the BMWi projects PlanQK (01MK20005N) and

IC4F (01MA17008G). The authors would like to thank Lisa Podszun for her help with

the documentation of existing patterns.

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 15

References

1. C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns, Buildings, Con-

struction. Oxford University Press, Aug. 1977.

2. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley, Oct. 1994.

3. M. Fowler, Patterns of Enterprise Application Architecture. Addison-Wesley, Nov. 2002.

4. G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploy-

ing Messaging Solutions. Addison-Wesley, 2004.

5. M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Sommerlad,

Security Patterns: Integrating security and systems engineering. John Wiley & Sons, 2013.

6. C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud Computing Patterns:

Fundamentals to Design, Build, and Manage Cloud Applications. Springer, Jan. 2014.

7. J. O. Coplien, Software Patterns. SIGS Books & Multimedia, 1996.

8. “Cloud computing patterns,” https://cloudcomputingpatterns.org/.

9. “Internet of things patterns,” http://internetofthingspatterns.com/.

10. G. Hohpe, “Enterprise integration patterns,” https://www.enterpriseintegrationpatterns.com/.

11. “Ui patterns,” https://ui-patterns.com/.

12. “Pattern catalog,” http://designpatterns.wikidot.com/pattern-catalog.

13. J. O. Borchers, “A Pattern Approach to Interaction Design,” in Cognition, Communica-

tion and Interaction: Transdisciplinary Perspectives on Interactive Technology, ser. Human-

Computer Interaction Series, S. Gill, Ed. Springer, 2008, pp. 114–131.

14. “The public sphere project,” https://www.publicsphereproject.org/.

15. “Open pattern repository for online learning systems,” https://

www.learningenvironmentslab.org/openpatternrepository/.

16. C. Fehling, J. Barzen, M. Falkenthal, and F. Leymann, “PatternPedia – Collaborative Pattern

Identification and Authoring,” in Proceedings of PURPLSOC (Pursuit of Pattern Languages

for Societal Change). The Workshop 2014., Aug. 2015, pp. 252–284.

17. M. Falkenthal, J. Barzen, U. Breitenbücher, and F. Leymann, “Solution languages: Easing

pattern composition in different domains,” International Journal on Advances in Software,

pp. 263–274, 2017.

18. M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F. Leymann, “Efficient Pattern

Application: Validating the Concept of Solution Implementations in Different Domains,”

International Journal On Advances in Software, vol. 7, no. 3&4, pp. 710–726, Dec. 2014.

19. F. Leymann and J. Barzen, “Pattern Atlas,” arXiv:2006.05120 [cs], Jun. 2020, arXiv:

2006.05120. [Online]. Available: http://arxiv.org/abs/2006.05120

20. J. Barzen and F. Leymann, “Patterns as Formulas: Patterns in the Digital Humanities,” in

Proceedings of the Ninth International Conferences on Pervasive Patterns and Applications

(PATTERNS). Athen: Xpert Publishing Services, pp. 17–21.

21. S. Henninger and V. Corrêa, “Software pattern communities: current practices and chal-

lenges,” in Proceedings of the 14th Conference on Pattern Languages of Programs - PLOP

’07. ACM Press, 2007, p. 1.

22. J. O. Coplien, Software patterns. New York; London: SIGS, 1996.

23. M. Falkenthal, U. Breitenbücher, and F. Leymann, “The nature of pattern languages,” in

Proceedings of the International Conference on Pursuit of Pattern Languages for Societal

Change (PURPLSOC), 10 2018, p. 130–150.

24. J. Noble, “Classifying relationships between object-oriented design patterns,” in Proceedings

1998 Australian Software Engineering Conference (cat. no. 98ex233). IEEE, 1998, pp. 98–

107.

16 Weigold et al.

25. W. Zimmer, “Relationships between design patterns,” Pattern languages of program design,

vol. 57, pp. 345–364, 1995.

26. M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, F. Leymann, A. Hadjakos,

F. Hentschel, and H. Schulze, “Leveraging Pattern Application via Pattern Refinement,” in

Proceedings of the International Conference on Pursuit of Pattern Languages for Societal

Change (PURPLSOC 2015). epubli, Jun. 2015.

27. T. Winn and P. Calder, “A pattern language for pattern language structure,” in Proceedings

of the 2002 Conference on Pattern languages of Programs, vol. 13, 2003, pp. 45–58.

28. D. J. Meszaros and J. Doble, “A pattern language for pattern writing,” in Proceedings of

International Conference on Pattern languages of program design (1997), vol. 131, 1997, p.

164.

29. IEEE Standards Association, IEEE Std 1471 (2000): IEEE Recommended Practice for Ar-

chitectural Description of Software-Intensive Systems, Std., 2000.

30. P. Avgeriou and U. Zdun, “Architectural Patterns Revisited – A Pattern Language,” in In

10th European Conference on Pattern Languages of Programs (EuroPlop 2005). UVK -

Universitaetsverlag Konstanz, Jul. 2005.

31. J. Barzen and F. Leymann, “Costume Languages as Pattern Languages,” in Proceedings

of PURPLSOC (Pursuit of Pattern Languages for Societal Change). The Workshop 2014,

P. Baumgartner and R. Sickinger, Eds. Krems: PURPLSOC 2015, Juni 2015, Workshop-

Beitrag, pp. 88–117.

32. R. Porter, J. O. Coplien, and T. Winn, “Sequences as a basis for pattern language composi-

tion,” Science of Computer Programming, vol. 56, no. 1-2, pp. 231–249, Apr. 2005.

33. U. Zdun, “Systematic Pattern Selection Using Pattern Language Grammars and Design

Space Analysis,” Software: Practice & Experience, no. 9, pp. 983–1016, Jul. 2007.

34. M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F. Leymann, “From Pattern Lan-

guages to Solution Implementations,” in Proceedings of the Sixth International Conferences

on Pervasive Patterns and Applications (PATTERNS 2014). Xpert Publishing Services,

May 2014, pp. 12–21.

35. J. Barzen, M. Falkenthal, and F. Leymann, Wenn Kostüme sprechen könnten: MUSE - Ein

musterbasierter Ansatz an die vestimentäre Kommunikation im Film, ser. Digital Humanities.

Perspektiven der Praxis. Berlin: Frank und Timme, Mai 2018, pp. 223–241.

36. J. C. Caiza, Y.-S. Martı́n, J. M. Del Alamo, and D. S. Guamán, “Organizing Design Patterns

for Privacy: A Taxonomy of Types of Relationships,” in Proceedings of the 22Nd European

Conference on Pattern Languages of Programs, ser. EuroPLoP ’17. ACM, 2017, pp. 32:1–

32:11.

37. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Soft-

ware Architecture, Volume 1: A System of Patterns. Wiley, Oct. 1996.

38. L. Reinfurt, M. Falkenthal, and F. Leymann, “Where to begin: on pattern language entry

points,” SICS Software-Intensive Cyber-Physical Systems, 2019.

39. C. Köppe, P. S. Inventado, P. Scupelli, and U. Van Heesch, “Towards extending online pattern

repositories: Supporting the design pattern lifecycle,” in Proceedings of the 23rd Conference

on Pattern Languages of Programs, ser. PLoP ’16. USA: The Hillside Group, 2016.

40. D. Schumm, F. Leymann, and A. Streule, “Process Viewing Patterns,” in Proceedings of the

14th International Conference on Enterprise Distributed Object Computing (EDOC 2010).

IEEE, Oct. 2010, pp. 89–98.

41. ——, “Process views to support compliance management in business processes,” in Proceed-

ings of the 11th International Conference on Electronic Commerce and Web Technologies

(EC-Web 2010), ser. Lecture Notes in Business Information Processing (LNBIP), vol. 61.

Springer, 2010, p. 131–142.

42. L. Pavlič, M. Hericko, and V. Podgorelec, “Improving design pattern adoption with

Ontology-Based Design Pattern Repository,” Jul. 2008, pp. 649–654.

Pattern Views: Concept and Tooling for Interconnected Pattern Languages 17

43. R. Schauer and R. K. Keller, “Pattern visualization for software comprehension,” in

Proceedings. 6th International Workshop on Program Comprehension. IWPC’98 (Cat.

No.98TB100242), June 1998, pp. 4–12.

44. L. Welicki, O. Sanjuán, J. Manuel, and J. Cueva Lovelle, “A Model for Meta-Specification

and Cataloging of Software Patterns,” Proceedings of the 12th Conference on Pattern Lan-

guages of Programs (PLoP 2012), Jan. 2005.

45. J. Barzen, “Wenn Kostüme sprechen - Musterforschung in den Digital Humanities am

Beispiel vestimentärer Kommunikation im Film,” Ph.D. dissertation, Universität zu Köln,

2018.

46. C. Fehling, J. Barzen, U. Breitenbücher, and F. Leymann, “A Process for Pattern Identifi-

cation, Authoring, and Application,” in Proceedings of the 19th European Conference on

Pattern Languages of Programs (EuroPLoP 2014). ACM, Jan. 2014.

47. U. Zdun, P. Avgeriou, C. Hentrich, and S. Dustdar, “Architecting as Decision Making with

Patterns and Primitives,” in Proceedings of the 3rd International Workshop on Sharing and

Reusing Architectural Knowledge (SHARK 2008). ACM, May 2008, pp. 11–18.

48. L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg, “Internet of things

patterns for devices,” in Ninth international Conferences on Pervasive Patterns and Applica-

tions (PATTERNS) 2017. Xpert Publishing Services (XPS), 2017, pp. 117–126.

49. A. Nowak, F. Leymann, D. Schleicher, D. Schumm, and S. Wagner, “Green Business Process

Patterns,” in Proceedings of the 18th Conference on Pattern Languages of Programs (PLoP

2011). ACM, Oct. 2011.

50. J. Barzen, U. Breitenbücher, L. Eusterbrock, M. Falkenthal, F. Hentschel, and F. Leymann,

“The vision for MUSE4Music. Applying the MUSE method in musicology,” Computer Sci-

ence - Research and Development, pp. 1–6, November 2016.

51. F. Leymann, “Towards a pattern language for quantum algorithms,” in Quantum Technology

and Optimization Problems, ser. Lecture Notes in Computer Science (LNCS), vol. 11413.

Cham: Springer International Publishing, 2019, pp. 218–230.

	Pattern Views: Concept and Tooling for Interconnected Pattern Languages

