
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{weigold, barzen, leymann, salm}@iaas.uni-stuttgart.de

Expanding Data Encoding Patterns
For Quantum Algorithms

Manuela Weigold, Johanna Barzen, Frank Leymann, Marie Salm

© 2021 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

This is the accepted version of the article, the final published version can
be accessed at: https://doi.org/10.1109/ICSA-C52384.2021.00025

@inproceedings{Weigold2021_ExpandingDataEncodingPatterns,

author = {Weigold, Manuela and Barzen, Johanna and Leymann, Frank and

Salm, Marie},

title = {Expanding Data Encoding Patterns For Quantum Algorithms},

booktitle = {2021 IEEE 18th International Conference on

Software Architecture Companion (ICSA-C)},

year = {2021},

pages = {95--101},

doi = {10.1109/ICSA-C52384.2021.00025},

publisher = {IEEE}

}

:

Institute of Architecture of Application Systems

https://doi.org/10.1109/ICSA-C52384.2021.00025

Expanding Data Encoding Patterns

For Quantum Algorithms

Manuela Weigold, Johanna Barzen, Frank Leymann, Marie Salm

University of Stuttgart, Universitätsstr. 38, Germany

{weigold, barzen, leymann, salm}@iaas.uni-stuttgart.de

Abstract—As quantum computers are based on the laws
of quantum mechanics, they are capable of solving certain
problems faster than their classical counterparts. However, often
algorithms which a theoretical speed-up assume that data can
be loaded efficiently. In general, the runtime complexity of the
loading routine depends on (i) the data encoding that defines
how the data is represented and (ii) the data itself. In some cases,
loading the data requires at least exponential time which destroys
a potential speed-up. And especially for the first generation of
devices that are currently available, the resources (qubits and
operations) needed to encode the data are limited. Therefore,
understanding the consequences of a particular data encoding
is crucial. To capture knowledge about different encodings, we
present two data encoding patterns that extend our previous
collection of encoding patterns [1].

Index Terms—Quantum Computing, Data Encoding, Patterns,
Pattern Primitives

I. INTRODUCTION

Recent advantages in quantum technology have led to a

first generation of commercial quantum computers [2], [3].

Compared to their classical counterparts, quantum computers

have the potential to solve certain problems faster [4]. For

example, factoring large prime numbers [5] or unstructured

search [6] can in principle be done faster by a quantum

computer. These speed-ups are possible because quantum

computers are based on quantum bits (qubits) and therefore

can exploit superposition or entanglement which are unique

characteristics of quantum mechanics. The quantum computers

of this first generation have been coined Noisy Intermediate

Scale Quantum (NISQ) devices [3] as they still have severe

limitations: Their qubits are noisy and only stable for a limited

amount of time until they decay. Measured by their number of

qubits, the computers are of intermediate size; ranging from

a few dozens to a few hundred qubits. Nevertheless, it is

expected that hardware will further improve [2], [7], [8] and

enable novel applications for quantum computers.

However, programming these quantum devices is chal-

lenging as their quantum nature as well as their hardware

limitations must be taken into account. One key difference

to classical computing is the way data is handled by quantum

computers. Current quantum computers do not have access to

a database or a quantum version of random access memory

(RAM) [9]. Thus, in order to use data in a quantum computer,

This work is partially funded by the BMWi project PlanQK
(01MK20005N).

this data has to be loaded by encoding it into the state of

the qubits. However, there are various data encodings that

define how the data can represented by qubits. Note that the

runtime of the loading routine depends on (i) the chosen

data encoding, and (ii) on the data itself. It was proven

that in the worst case, the loading routine is at least of

exponential complexity, i.e., an exponential number of parallel

operations is needed [10]. However, a common assumption of

algorithms with a theoretical linear or exponential speed-up

is that the process of loading data requires only logarithmic

or linear time [11]. Aaronson [11] refers to these assumptions

as fine-print of the algorithm, indicating that these are often

overlooked or at least not prominent to readers. Especially in

the current NISQ era understanding these runtime implications

is crucial as only a certain amount of operations can be

executed on noisy qubits. As developing software for quantum

computers requires the interdisciplinary collaboration of e.g.,

physicists and computer scientists [12], a shared understanding

of data loading in particular is needed.

In previous work [1], we formulated three patterns for data

encoding in quantum computing to convey expert knowledge

about different encodings. Patterns document proven solutions

for re-occurring problems and are especially popular in the

field of software [13]. In addition, fundamental building blocks

used by patterns can be described as pattern primitives [14].

In this work, we first introduce pattern primitives to estab-

lish a common understanding and terminology of quantum

computing fundamentals. Building upon these, we extend our

previous collection of data encoding patterns by two new data

encoding patterns. They describe a common solution (how data

is encoded) that is used by at least three published quantum

algorithms. With the first pattern, we explicitly document

the limitations (aka fine-print) of many algorithms that use

a quantum random access memory (QRAM) to load data.

Since to this day, no hardware implementations of a QRAM is

available, there are severe limitations, i.e., loading the data can

not be guaranteed to be efficient. Our second pattern defines a

different encoding that requires one qubit for each data-point.

The remainder of this paper is structured as follows: We

first describe fundamentals and pattern primitives for quantum

computing in Section II. We then give an overview of all

encodings patterns and present the new patterns in detail in

Section III. This is followed by a description of related work

in Section IV. Finally, a conclusion is given in Section V.

II. FUNDAMENTALS

In this section, we first introduce patterns and pattern prim-

itives. This is followed by an overview of quantum computing

and quantum algorithms. Finally, fundamental building blocks

of quantum algorithms are introduced as pattern primitives.

A. Patterns and Pattern Primitives

In this paper, we build on the concept of patterns of

Alexander et al. [15]. They define patterns as structured,

human-readable documents that document a proven solution

to a reoccurring problem in a given context. Pattern primitives

describe fundamental elements that re-occur in patterns and

have first been introduced in the context of software architec-

ture to describe basic architectural units [14], for example ports

or components. Since then, the concept has been applied to

various other domains [16]–[18]. Pattern primitives are more

specific than the abstract solution of a pattern [14] and are

therefore especially suited to establish a common ground and

base terminology for patterns within one domain [19].

B. Quantum Computing

Since the first proposal of a quantum computer, various

quantum computing models have been established which

describe computations in a different manner, e.g., the adia-

batic [20], gate-based [21] or one-way model [22]. In this

work, we focus on the gate-based model that serves as the

basis for many current devices [23], e.g., by IBM1, or Rigetti2.

However, in principle our collection of quantum computing

patterns can be extended with patterns or primitives for other

models in the future.

For the first decades, quantum computing was mostly driven

by research. Many algorithms for quantum computers were

published before any commercial hardware existed [6], [24].

Thus, these first algorithms were only of theoretical relevance

until the first commercial quantum computer was released in

2016 [25]. And even though until today no quantum random

access memory (QRAM) [26] exists, is a common prerequisite

of many algorithms [27]–[29].

Quantum algorithms are often hybrid and, therefore, consist

of classical and quantum calculations. For example, Shor’s

algorithm [24] uses a quantum subroutine in an intermediate

step. In the following, we describe a typical structure of a

quantum computation and then define the main components as

primitives in the next section. Fig. 1 illustrates the computation

as a quantum circuit. First, the qubits of the register are

initialized as |0〉. Then, an initial state is prepared. This step

also includes loading data which (as a result) is encoded in the

state of the register. Afterward, quantum gates perform unitary

transformations on the state of the register. Finally, one or

multiple qubits are measured as the result of this computation

indicated by measurement gates. The overall quantum circuit

is characterized by its depth which is the number of sequential

executable gates and its width that equals the number of

required qubits [30]).

1https://www.ibm.com
2https://www.rigetti.com

Q
u

b
it

R
e

g
is

te
r ȁ ۧ0ȁ ۧ0ȁ ۧ0ȁ ۧ0⋮

State

Preparation
⋮ Unitary

Transformation
⋮

w
id

th

depth

Quantum Circuit

Fig. 1. Typical structure of a quantum calculation that is represented as a
quantum circuit which has a defined depth and width.

C. Pattern Primitives For Quantum Algorithms

In this section, we present three pattern primitives for

quantum computing. Each primitive has a Name and an

Icon as a graphical representation. This is followed by a

short Description and if applicable, a Sketch. As quantum

computing is based on quantum mechanics, this is followed by

a Mathematical Definition, and an Example that illustrates a

concrete instance. Our primitives cover fundamental building

blocks of quantum computing that serve as a basis for our data

encoding patterns in Section III. Note that we do not claim that

this is an exhaustive list of pattern primitives for the domain.

We first introduce the most basic primitive (QUBIT) and then

present QUBIT REGISTER and QUANTUM GATE.

QUBIT

Description: A quantum bit (qubit) is the basic unit for

information in quantum computing.

Mathematical Definition: The state of a qubit is repre-

sented by a two-dimensional vector |ψ〉:

|ψ〉 = α |0〉+β |1〉 where α, β ∈ C and |α|2 + |β|2 = 1 (1)

Here we used the Dirac notation for vectors where in particular

|0〉 =
(

1
0

)

and |1〉 =
(

0
1

)

.

The set {|0〉 , |1〉} is a basis of the two-dimensional vector

space of the qubit and also referred to as the computational

basis. The complex numbers α and β are the amplitudes of the

quantum system and determine the possibility of a measure-

ment outcome: with a probability of |α|2, a measurement in

the computational basis results in |0〉 and with a probability

of |β|2, measuring results in the |1〉 state. As these are the

only possible outcomes of a measurement, their possibilities

(|α|2 and |β|2) must sum up to 1. If α, β 6= 0, the qubit is in

a superposition - and therefore, in a linear combination - of

|0〉 and |1〉.
A common visualization of the state of a qubit is the

Bloch Sphere (see Fig. 2) which also inspired the icon of

this primitive. Each possible state is mapped to a point on the

surface of the Bloch Sphere.

𝑥
𝑦

ȁ ۧ0

ȁ ۧ1

𝑧
ȁ ۧ+ȁ ۧ−

Fig. 2. Bloch Sphere Representation of a Qubit.

Example: For example, the so-called |+〉 state that is

depicted in Fig. 2 is an equal superposition of |0〉 and |1〉:

|+〉 = 1√
2
|0〉+ 1√

2
|1〉

The probability for both measurement outcomes (|0〉 and |1〉)
is equal and can be calculated as follows: | 1√

2
|2 = 0.5.

QUBIT REGISTER

Description: Multiple qubits can form a qubit register

whose state is represented by a vector in a high dimensional

complex vector space.

Mathematical Definition: The state of an n-qubit register

is defined as:

|ψ〉 =
2
n−1

∑

i=0

αi |i〉 where

2
n−1

∑

i=0

|αi|2 = 1. (2)

In the equation above, |i〉 is used as a common notation for

|b0 . . . bn〉 where b0 . . . bn is the binary representation of i. If

there are at least two amplitudes ai, aj 6= 0, i 6= j, the register

is in superposition of all states with a non-zero amplitude.

If each quantum system s is prepared in the state |ψs〉, the

composite system can be described as tensor product [21]:

|ψ〉 = |ψ0〉 ⊗ |ψ1〉 ⊗ . . .⊗ |ψn〉 (3)

Often, Eq. (3) is abbreviated to |ψ0ψ1 . . . ψn〉. If the state is

not separable, i.e., it can not be expressed as a tensor product

of its components, it is in an entangled state [21].

Example: An example of an entangled state is |φ+〉:

|φ+〉 = 1√
2
|00〉+ 1√

2
|11〉

Note that measuring only one of the qubits determines the

measurement outcome of the other (both are measured as

either |0〉 or |1〉). A state which is not entangled is for example

|ψ〉 = 1√
2
|00〉+ 1√

2
|01〉

as it can be rewritten as a product of the individual qubits

(refer to [21] for an in-depth introduction on entanglement):

|ψ〉 = |0〉 ⊗ (
1√
2
|0〉+ 1√

2
|1〉).

U
QUANTUM GATE

Description: Analogue to classical logic gates (for example

AND, OR, and NOT) that act on bits, quantum computers

manipulate qubits with quantum gates. Often, a calculation

is described as a quantum circuit (Fig. 3) that visualizes the

sequence of quantum gates that are applied to each qubit.

Quantum gates can act on either one or multiple qubits.

ȁ ۧ𝜓0ȁ ۧ𝜓1ȁ ۧ𝜓2
𝑅𝑦 𝜋
𝑈

Fig. 3. Exemplary quantum circuit. Quantum gates are applied in temporal
order from left to right. Quantum gates are defined for either one (for example
Ry) or multiple qubits, e.g., the gate that is applied to the other two qubits.

Mathematical Definition: Except for measurement gates

(i.e., the second gate on the first qubit in Fig. 3), a quantum

gate is defined by a unitary matrix U for which by definition

the inverse matrix U† can be applied to undo the computation

of U . By multiplying this matrix with a state vector, the

resulting state vector can be obtained.

Example: An example of a one-qubit gate is Ry [10]:

Ry(2x) =

(

cosx − sinx
sinx cosx

)

This defines a rotation by an angle 2x around the y axis of

the Bloch Sphere (refer to Fig. 2 for a visual representation).

For example, rotating |0〉 around an angle of π in the Bloch

Sphere can be expressed as follows:

Ry(π) |0〉 = Ry(2
π

2
) |0〉 =

(

cos π
2

− sin π
2

sin π
2

cos π
2

)(

1
0

)

which can be further simplified to:

(

0 −1
1 0

)(

1
0

)

=

(

0
1

)

and thus, results in a |1〉 state.

III. PATTERNS FOR DATA ENCODING

We start by describing our method for collecting patterns

(Section III-A) and the pattern format (Section III-B). As both

our new patterns are encoding patterns, we first describe their

shared forces (Section III-C) which can also be found in our

previous work [1]. We then give an overview of previous [1]

and new patterns for data encoding in quantum computing

(III-D) and present the new patterns (ANGLE and QRAM

ENCODING) in detail.

A. Method

Patterns are abstracted from existing solutions [15]. The

patterns presented here and in previous publications [1],

[31] were identified using the pattern authoring process of

Fehling et al. [19] which we also describe in [1]. First, we

analyzed scientific publications, books, and technical docu-

mentation to collect re-occurring solutions. If we found at least

three occurrences (Coplien’s rule [13]) of a pattern candidate,

we authored a pattern. For loading data, a proven solution is

a specific data-encoding used in various quantum algorithms.

Note that given the current state of the art of quantum com-

puting we do not require a concrete implementation. Instead,

we focus on authoring patterns for writing and understanding

quantum algorithms. However in future work, the patterns

should be validated further in real applications.

B. Pattern Format

Depending on the domain, pattern authors use different

formats for their patterns. Here, we use the pattern format of

our previous work [1] that was based on the existing format of

Fehling et al. [32]. Each pattern is introduced by a Name and

an Icon that serves as a graphical representation of the pattern.

Next to the icon, we denote the Intent that briefly summarizes

the purpose of the pattern. If the pattern is also known under

different names, these are listed as an Alias. Then, the problem

and the circumstances of the pattern are described in the

Context section before the Forces are presented. The forces are

trade-offs or considerations that must be taken into account

for solving the problem. The Solution itself is described in

an abstract manner and often visualized by a Solution Sketch.

Consequences of the solution are described as the Result of the

solutions. This is followed by an optional section for Variants

of the pattern. As patterns are often applied in combination or

solve similar problems, we describe the connections between

them in the Related Patterns section. Finally, we list Known

Uses of the pattern. For encoding patterns, algorithms that use

the encoding and state preparation routines are listed here.

Additionally, concrete implementations of these algorithms

can also be referred to in this section.

C. Forces of Data Encoding Patterns

Loading data is not a trivial task in quantum computing

as a variety of data encodings can be used depending on the

requirements of the proper unitary transform of the algorithm.

Every data encoding is essentially a trade-off between three

major forces:

(i) the number of qubits needed for the encoding should be

minimal because current devices are of intermediate size

and thus only contain a limited number of qubits

(ii) the number of parallel operations needed to realize the

encoding should be minimal to minimize the width of

the quantum circuit - ideally, the loading routine is of

constant or logarithmic complexity

(iii) the data must be represented in a suitable manner for

further calculations, e.g., arithmetic operations.

D. Overview of Data Encoding Patterns

Data encodings for quantum computing define how data is

represented by the state of a quantum system. Table I gives an

overview of previous [1] and new encoding patterns which are

marked in bold. An excerpt of the patterns can also be found at

Quantum Computing Patterns3. Each of these patterns further

refines INITIALIZATION, a pattern of previous work [31] that

describes the state preparation phase at the beginning of an

algorithm (refer to Fig. 1). While the encodings of the first

two patterns define how a single numerical data-point xi is

encoded, the three other patterns describe how a set X of n

data-points can be represented. The representation of data in

BASIS ENCODING is also part of two other encodings (QUAM

and QRAM ENCODING). Therefore, we explain this pattern

in more detail before we present the new encoding patterns

(ANGLE and QRAM ENCODING) in detail.

For a BASIS ENCODING of a numerical data-point, its value

is first approximated by its binary representation. The resulting

bitstring bm . . . b−k is then encoded by the |bm . . . b−k〉 state.

Therefore, every bit of its bitstring is represented by a single

qubit. Thus, BASIS ENCODING is not efficient in terms of the

required number of qubits. In comparison, QUAM ENCODING

uses superposition to encode a set of data-points in a qubit

register of the same length (assuming that the binary repre-

sentation of all values is equally long or padded with zeros).

QRAM ENCODING needs ⌈log n⌉ additional qubits to repre-

sent the same data. Even more compact is the representation

of data in AMPLITUDE ENCODING for which only ⌈log n⌉
qubits are needed. However, for an arbitrary data set the

last three encodings of Table I cannot be realized efficiently;

i.e. in constant or logarithmic number of parallel operations.

While BASIS ENCODING and ANGLE ENCODING are not

efficient in terms of required qubits, they can be realized in

constant time (one single parallel operation). Further details

and consequences of the encodings listed in Table I can be

found in the corresponding patterns.

TABLE I
COMPARISON OF NEW AND PREVIOUS [1] DATA ENCODING PATTERNS.

Encoding Pattern Encoding Req. Qubits

BASIS

ENCODING [1]
xi ≈

∑m
i=−k bi2

i 7→
|bm . . . b−k〉

l = k+m per
data-point

𝑥 ANGLE

ENCODING

xi 7→ cos(xi) |0〉 +
sin(xi) |1〉

1 per data-
point

+ QUAM
ENCODING [1]

X 7→
∑n−1

i=0

1
√

n
|xi〉 l

QRAM

QRAM

ENCODING

X 7→
∑n−1

n=0

1
√

n
|i〉 |xi〉 ⌈logn⌉+ l

𝑥 𝑥 AMPLITUDE

ENCODING [1]
X 7→

∑n−1

i=0
xi |i〉 ⌈logn⌉

3https://quantumcomputingpatterns.org/

ANGLE ENCODING

𝑥 Represent each data-point by a separate qubit

Alias: Qubit Encoding [33], (Tensor) Product Encod-

ing [34]

Context: An algorithm requires an efficient encoding

schema to be able to perform as many operations as possible

within the decoherence time after the data has been loaded.

Solution: First, normalize all data-points that should be en-

coded to the interval [0, 2π]. Each value xi is then represented

by a single qubit as follows (Fig. 4): a rotation around the y-

axis of the Bloch Sphere (refer to Fig. 2) is applied. Hereby,

the angle for the rotation depends on the data value (see

Section II-C for a more detailed description of the operation).

ȁ ۧ0ȁ ۧ0ȁ ۧ0
𝑅𝑦 2𝑥0𝑅𝑦 2𝑥1
𝑅𝑦 2𝑥𝑛⋮⋮

Fig. 4. Quantum circuit for loading data in ANGLE ENCODING based on
Leymann and Barzen [34].

Result: The resulting quantum state for this encoding is

separable, i.e. the qubits are not entangled:

|ψ〉 =
(

cosx0
sinx0

)

⊗
(

cosx1
sinx1

)

⊗ . . .⊗
(

cosxn
sinxn

)

(4)

The main advantage of this encoding is that it is very efficient

in terms of operations: Only a constant number of parallel

operations is needed regardless of how many data values need

to be encoded [33]. However, the number of data values affects

how many qubits are needed: One qubit is required to encode

one component of the input vector. Thus, as only single-qubit

rotations are required the state preparation routine is highly

efficient while the number of qubits for this encoding is not

optimal [35].

Related Patterns: This pattern refines INITIALIZATION.

Variants: [33] present dense angle encoding as an alter-

native encoding that exploits an additional property of qubits

(relative phase) to use only n
2

qubits to encode n data points.

Known Uses: [33] and [35] present a classifier based on

this encoding. The encoding is also used in quantum image

processing: In the so-called flexible representation of quantum

image (FRQI), one qubit represents the color information of

a pixel whereas another register represents the position [36].

In the context of quantum neural networks, a qubit using

this encoding has been referred to as a quantum neuron

(quron) [37]. PennyLane provides a state preparation routine

for angle encoding [38] for which the axis of the rotation can

be specified (x, y, or z). If no loading routine is provided,

a state preparation routine can be constructed with standard

qubit rotations in a straightforward manner [34].

QUANTUM RANDOM ACCESS MEMORY (QRAM)

ENCODING

QRAM

Use a quantum random access memory to access a

superposition of data values at once

Context: An algorithm requires random access to the data

values of the input.

Solution: A classical RAM that receives an address with

a memory index, loads the data stored at this address into an

output register. QRAM provides the same functionality, but

the address and output register are quantum registers [9]. As

a result, both the address and the output register can be in

a superposition of multiple values. Fig. 5 illustrates the basic

functionality of a QRAM [26] that receives a superposition of

the first two addresses (1√
2
|00〉+ 1√

2
|01〉) as input and loads

the corresponding data values into an empty output register.

This leads to the following state of the overall quantum system:

|ψ〉 = 1√
2
|00〉 |010〉+ 1√

2
|01〉 |110〉 (5)

In general, loading m of n data values with a QRAM can

therefore be described as the following operation [10]:

1√
m

m−1
∑

i=0

|a〉i |0〉 QRAM−−−−−→
1√
m

m−1
∑

i=0

|a〉i |xa〉 (6)

where the first register is the address register that is in a

superposition of all m addresses to be loaded and the second

register is the output register. Further, |a〉i specifies the address

of the i-th data value to be loaded and xa is the data value

associated with this address. The QRAM loads each data value

|xa〉 into the output register such that |a〉i |xa〉 is contained in

the combined state of both registers. Depending on the data

values, this state may be entangled.

QRAM+1212
1212

Fig. 5. Basic functionality of a QRAM based on [9]. Given an address register
that is in a superposition of addresses (|00〉 and |01〉), QRAM creates a super-

position of addresses and their data values: 1
√

2
|00〉 |010〉+ 1

√

2
|01〉 |110〉.

Result: For this encoding, l qubits are needed to encode

the data values using BASIS ENCODING. The address register

requires ⌈log(n)⌉ additional qubits for a maximum of n

addresses. The computational properties are similar to those

of BASIS and QUAM ENCODING: As a superposition of the

encoded data values is prepared, data can be processed in

parallel (quantum parallelism) and arithmetic operations such

as addition or multiplication can be used.

An algorithm that uses QRAM, assumes that an efficient

procedure exists that can be used to perform state preparation

in logarithmic runtime [10]. As long as there are no hardware

implementations of QRAM, a state preparation routine must

be used that mirrors the loading process of a QRAM. The

main drawback of QRAM encoding is that in general, no state

preparation routine for arbitrary input data exists that is as

efficient as a QRAM. A promised speed-up of an algorithm

that relies on QRAM can only be realized if data can be

encoded efficiently by a known state preparation routine.

Related Pattern: This pattern further refines INITIALIZA-

TION and uses BASIS ENCODING. As the address and output

register of QRAM ENCODING are often entangled, CREATING

ENTANGLEMENT [31] is used.

Known Uses: An algorithm for state preparation is given by

circuit family #3 of [39]. An alternative approach is presented

in [40]. This encoding is used by algorithms for solving

semi-definite programs [41]. Various other algorithms exist

that require or are improved upon QRAM [26]–[29]. The so-

called HHL algorithm for solving linear equations [42] uses

QRAM ENCODING to represent eigenvalues in an intermedi-

ate step [41].

IV. RELATED WORK

The encoding patterns presented in this work complement

encoding patterns [1] and patterns for quantum algorithms [31]

of our previous works. While various other publications [43]–

[45] introduce ”quantum patterns“, none of these confirm to

patterns in the sense of Alexander et al. [15]. Therefore, to

our best knowledge, no other pattern for quantum computing

have been published so far.

Besides the encodings mentioned in this paper, various other

encodings have been used in quantum algorithms. An overview

of data encodings with focus on quantum machine learning can

be found in [10], [33], [35], while [36] describes encodings

for quantum image processing. In [33], the authors show

that using ANGLE ENCODING as input data for a quantum

classifier restricts the decision boundaries that the model can

learn to a simple sine-function. [46] further generalizes these

findings and show that the expressive power of a model can

be increased by repeating the encoding. [34] draws general

conclusions for data loading and various encodings in the

NISQ era. In contrast to our approach, none of the previously

mentioned overviews uses patterns to provide easy access to

knowledge about data encodings.

In the context of quantum machine learning, the process

of encoding data is also referred to as applying a quantum

feature map φ [47], [48]. The authors point out that quantum

feature maps and kernels in machine learning are related:

Each feature map implicitly defines a quantum kernel. After

applying the quantum feature map (and thus, loading the data),

the data can be analyzed in high-dimensional space. Therefore,

each encoding that we presented in this paper gives rise to a

quantum feature map φ and defines a quantum kernel.

QRAM is an essential component in larger quantum com-

puters [26]. Several architectures have been proposed and

demonstrated on a small scale (see for example [49]). How-

ever, building a larger QRAM remains an open technical

challenge for hardware providers [50], [51] which we also

emphasize in our QRAM ENCODING pattern.

As current NISQ devices are limited by their hardware,

various tools estimate or determine the resources required by

a quantum algorithm (in particular, qubits and operations).

Microsoft introduced the Quantum Resources Estimator 4 for

implementations in their quantum programming language Q#.

The NISQ Analyzer of Salm et al. [52] considers concrete input

data of quantum algorithms and suggests suitable implemen-

tations and quantum computers for execution. The knowledge

about data encodings captured in our patterns can be used to

further improve these estimations.

V. CONCLUSION

In this paper, we extended our previous collection of

patterns [1], [31] by two new data encoding patterns. In

our overview of all existing encoding patterns, we compared

them regarding their forces (in particular in terms of required

qubits). Especially in the NISQ area, a specific encoding

may simply be preferred because it is very efficient in terms

of qubits (e.g., AMPLITUDE ENCODING) or operations for

state preparation (e.g., ANGLE ENCODING). Nevertheless,

understanding the limitations of QRAM ENCODING is crucial

for many quantum algorithms. Besides the encoding patterns,

we also introduced three pattern primitives that serve as

fundamental building blocks for our patterns.

In the future, we will collect more quantum computing

patterns and share them in our pattern repository [53], [54]

as part of the PlanQK5 project. We also plan to add concrete

implementations to the patterns for further validations. The en-

coding patterns will further contribute to improve the resource

estimation for quantum algorithms [52] in the future.

ACKNOWLEDGMENT

This work is partially funded by the BMWi project PlanQK

(01MK20005N).

REFERENCES

[1] M. Weigold, J. Barzen, M. Salm, and F. Leymann, “Data encoding
patterns for quantum computing,” in Proceedings of the 27th Conference

on Pattern Languages of Programs. The Hillside Group, 2021, in press.
[2] National Academies of Sciences, Engineering and Medicine, Quantum

Computing: Progress and Prospects. Washington, DC: The National
Academies Press, 2019.

[3] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quan-

tum, vol. 2, p. 79, Aug. 2018.
[4] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quan-

tum entanglement,” Reviews of modern physics, vol. 81, no. 2, p. 865,
2009.

[5] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[6] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” Proceedings of the twenty-eighth annual ACM symposium on

Theory of computing - STOC ’96, 1996.

4https://docs.microsoft.com/th-th/quantum/user-guide/machines/resources-
estimator

5http://planqk.de/

[7] “Ibm’s roadmap for scaling quantum technology,” https://www.ibm.com/
blogs/research/2020/09/ibm-quantum-roadmap/, 2020.

[8] “Scaling ionq’s quantum computers: The roadmap,” https://ionq.com/
posts/december-09-2020-scaling-quantum-computer-roadmap, 2020.

[9] E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, Program-

ming Quantum Computers: Essential Algorithms and Code Samples.
O’Reilly Media, Incorporated, 2019.

[10] M. Schuld and F. Petruccione, Supervised Learning with Quantum Com-

puters, ser. Quantum Science and Technology. Springer International
Publishing, 2018.

[11] S. Aaronson, “Read the fine print,” Nature Physics, vol. 11, pp. 291–293,
2015.

[12] B. Weder, J. Barzen, F. Leymann, M. Salm, and D. Vietz, “The
Quantum Software Lifecycle,” in Proceedings of the 1st ACM SIGSOFT

International Workshop on Architectures and Paradigms for Engineering

Quantum Software (APEQS 2020). ACM, Nov. 2020, Workshop, pp. 2–
9. [Online]. Available: https://dl.acm.org/doi/10.1145/3412451.3428497

[13] J. O. Coplien, Software Patterns. SIGS Books & Multimedia, 1996.

[14] U. Zdun and P. Avgeriou, “Modeling Architectural Patterns Using Archi-
tectural Primitives,” in Proceedings of the 20th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and

Applications (OOPSLA 2005). ACM, Oct. 2005, pp. 133–146.

[15] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:

Towns, Buildings, Construction. Oxford University Press, Aug. 1977.

[16] U. Zdun, C. Hentrich, and S. Dustdar, “Modeling process-driven and
service-oriented architectures using patterns and pattern primitives,”
ACM Trans. Web, vol. 1, no. 3, p. 14–es, Sep. 2007.

[17] C. Endres, U. Breitenbücher, M. Falkenthal, O. Kopp, F. Leymann,
and J. Wettinger, “Declarative vs. Imperative: Two Modeling Patterns
for the Automated Deployment of Applications,” in Proceedings of the

9th International Conference on Pervasive Patterns and Applications

(PATTERNS 2017). Xpert Publishing Services, Feb. 2017, pp. 22–27.

[18] D. Schumm, J. Barzen, F. Leymann, and L. Ellrich, “A Pattern Language
for Costumes in Films,” in Proceedings of the 17th European Conference

on Pattern Languages of Programs (EuroPLoP 2012), C. Kohls and
A. Fiesser, Eds. New York NY USA: ACM, 2012.

[19] C. Fehling, J. Barzen, U. Breitenbücher, and F. Leymann, “A Process
for Pattern Identification, Authoring, and Application,” in Proceedings

of the 19th European Conference on Pattern Languages of Programs

(EuroPLoP 2014). ACM, Jan. 2014.

[20] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and
O. Regev, “Adiabatic quantum computation is equivalent to standard
quantum computation,” SIAM review, vol. 50, no. 4, pp. 755–787, 2008.

[21] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum

information. Cambridge and New York: Cambridge University Press,
2010.

[22] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,”
Physical Review Letters, vol. 86, no. 22, p. 5188, 2001.

[23] R. LaRose, “Overview and Comparison of Gate Level Quantum Soft-
ware Platforms,” Quantum, vol. 3, p. 130, Mar. 2019.

[24] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations

of computer science. Ieee, 1994, pp. 124–134.

[25] “IBM makes quantum computing available on ibm cloud to accelerate in-
novation,” https://www-03.ibm.com/press/us/en/pressrelease/49661.wss,
2016.

[26] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum random access
memory,” Physical Review Letters, vol. 100, no. 16, p. 15, 2008.

[27] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector
machine for big data classification,” Physical review letters, vol. 113,
no. 13, p. 130503, 2014.

[28] N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum deep learning,”
arXiv:1412.3489, 2015.

[29] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal compo-
nent analysis,” Nature Physics, vol. 10, no. 9, pp. 631–633, 2014.

[30] J. L. F. W. B. Salm, Marie; Barzen, “About a Criterion of Successfully
Executing a Circuit in the NISQ Era: What wd ≪ 1/ǫeff Really
Means,” in Proceedings of the 1st ACM SIGSOFT International

Workshop on Architectures and Paradigms for Engineering Quantum

Software (APEQS 2020). ACM, Nov. 2020, Workshop, pp. 10–13.
[Online]. Available: https://dl.acm.org/doi/10.1145/3412451.3428498

[31] F. Leymann, “Towards a pattern language for quantum algorithms,” in
Quantum Technology and Optimization Problems, ser. Lecture Notes in

Computer Science (LNCS), vol. 11413. Cham: Springer International
Publishing, 2019, pp. 218–230.

[32] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud

Computing Patterns: Fundamentals to Design, Build, and Manage Cloud

Applications. Springer, Jan. 2014.
[33] R. LaRose and B. Coyle, “Robust data encodings for quantum classi-

fiers,” arXiv:2003.01695, 2020.
[34] F. Leymann and J. Barzen, “The bitter truth about gate-based quantum

algorithms in the NISQ era,” Quantum Science and Technology, pp. 1–
28, Sep. 2020. [Online]. Available: https://doi.org/10.1088/2058-9565/
abae7d

[35] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic,
A. G. Green, and S. Severini, “Hierarchical quantum classifiers,” npj

Quantum Information, vol. 4, no. 1, pp. 1–8, 2018.
[36] F. Yan, A. M. Iliyasu, and S. E. Venegas-Andraca, “A survey of quantum

image representations,” Quantum Information Processing, vol. 15, no. 1,
pp. 1–35, 2016.

[37] M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a quantum
neural network,” Quantum Information Processing, vol. 13, no. 11, pp.
2567–2586, 2014.

[38] “Templates,” https://pennylane.readthedocs.io/en/stable/introduction/
templates.html, 2020.

[39] J. A. Cortese and T. M. Braje, “Loading classical data into a quantum
computer,” arXiv:1803.01958, 2018.

[40] A. Prakash, “Quantum algorithms for linear algebra and machine learn-
ing.” Ph.D. dissertation, EECS Department, University of California,
Berkeley, Dec 2014.

[41] K. Mitarai, M. Kitagawa, and K. Fujii, “Quantum analog-digital con-
version,” Physical Review A, vol. 99, 01 2019.

[42] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Physical review letters, vol. 103, no. 15,
p. 150502, 2009.

[43] A. Gilliam, C. Venci, S. Muralidharan, V. Dorum, E. May,
R. Narasimhan, and C. Gonciulea, “Foundational patterns for efficient
quantum computing,” arXiv:1907.11513, 2019.

[44] Y. Huang and M. Martonosi, “Statistical assertions for validating patterns
and finding bugs in quantum programs,” in Proceedings of the 46th

International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
541–553.

[45] S. Perdrix, “Quantum patterns and types for entanglement and separa-
bility,” Electron. Notes Theor. Comput. Sci., vol. 170, p. 125–138, Mar.
2007.

[46] M. Schuld, R. Sweke, and J. J. Meyer, “The effect of data encoding on
the expressive power of variational quantum machine learning models,”
arXiv:2008.08605, 2020.

[47] M. Schuld and N. Killoran, “Quantum machine learning in feature
hilbert spaces,” Physical review letters, vol. 122, no. 4, p. 040504, 2019.

[48] V. Havlı́ček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala,
J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-
enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, 2019.

[49] M. Blencowe, “Quantum ram,” Nature, vol. 468, no. 7320, pp. 44–45,
2010.

[50] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[51] C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto,
S. Severini, and L. Wossnig, “Quantum machine learning: a classical
perspective,” Proceedings of the Royal Society A: Mathematical, Phys-

ical and Engineering Sciences, vol. 474, no. 2209, p. 20170551, 2018.
[52] M. Salm, J. Barzen, U. Breitenbücher, F. Leymann, B. Weder,

and K. Wild, “The NISQ Analyzer: Automating the Selection of
Quantum Computers for Quantum Algorithms,” in Proceedings of the

14th Symposium and Summer School on Service-Oriented Computing

(SummerSOC 2020). Springer International Publishing, Dec. 2020, pp.
66–85. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-030-64846-6 5

[53] F. Leymann and J. Barzen, “Pattern Atlas,” arXiv:2006.05120 [cs], 2020.
[54] M. Weigold, J. Barzen, U. Breitenbücher, M. Falkenthal, F. Leymann,

and K. Wild, “Pattern Views: Concept and Tooling of Interconnected
Pattern Languages,” in Proceedings of the 14th Symposium and Summer

School on Service-Oriented Computing (SummerSOC 2020). Springer
International Publishing, Dec. 2020, pp. 86–103. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-64846-6 6

