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Abstract. Quantum computers have the potential to solve certain prob-
lems faster than classical computers. However, the computations that
can be executed on current quantum devices are still limited. Hybrid
algorithms split the computational tasks between classical and quan-
tum computers circumventing some of these limitations. Therefore, they
are regarded as promising candidates for useful applications in the near
future. But especially for novices in quantum computing, it is hard to
identify why a particular splitting strategy is proposed by an algorithm.
In this work, we describe the best practices for splitting strategies as
patterns to foster a common understanding of hybrid algorithms.

Keywords: Quantum Computing · Patterns · Hybrid Algorithms

1 Introduction

Quantum computers are no longer a purely theoretical concept – a first genera-
tion of quantum computers is already available to the public [1, 2]. These devices
differ considerably from classical computers as their central unit of information is
not a classical bit (which can be in a state of either zero or one), but a quantum
bit (qubit). Because they are based on qubits, quantum computers are expected
to solve certain problems faster than their classical counterparts [3, 4]. Famous
examples for quantum algorithms that promise a theoretical linear or exponen-
tial speedup are Shor’s algorithm [5] for factoring prime numbers or the HHL
algorithm [6] for solving linear equations.

However, as current devices still have severe hardware limitations, they are
also referred to as Noisy Intermediate Scale Quantum (NISQ) devices [7]. Mea-
sured by their number of qubits, these devices are of intermediate size (they
contain up to a few hundred qubits). Their noisy qubits are only stable for a
limited amount of time. Due to their short lifespan, the number of operations
that can be executed on a NISQ device is limited. As a consequence, the required
operations of many quantum algorithms exceed those of NISQ devices, or they
can only be executed for small problems. For example, recent experiments were
able to demonstrate Shor’s algorithm [5] for factoring small numbers such as 15
or 21 [8]. Given the current state of hardware, Shor’s algorithm is one of many
algorithms which will not be of much practical use in the near future.
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Nevertheless, even with these limitations, first practical applications of quan-
tum computers are expected [7]. Since the size of quantum computations is lim-
ited, it has been suggested to use classical computers to overcome the limitations
of NISQ devices [9]. Thus, hybrid algorithms strategically split the computational
tasks between classical and quantum computers. In the quantum computing lit-
erature, an abundance of hybrid algorithms have been proposed and new algo-
rithms appear frequently. However, especially for novices in the field it is often
not clear what hybrid algorithm have in common or why they split the compu-
tational tasks in a particular manner. This raises the following questions: What
are common splitting strategies of hybrid algorithms? What are the benefits and
drawbacks of a splitting strategy, and in which contexts are they useful?

To answer these questions, we identify best practices for a quantum-classical
split and describe them as patterns. In many domains, patterns are an estab-
lished concept for the documentation of proven solutions for frequently reoccur-
ring problems. Each of our patterns captures the abstract idea behind various
quantum algorithms and its relations to other patterns. They are targeted at
readers that are already familiar with the basics of quantum computing, such as
qubits or quantum circuits. Together, the patterns form a common knowledge
base through which different approaches (i) can be understood, and (ii) can be
applied in combination to solve a broader problem.

The remainder of this work is structured as follows: we first give an overview
of patterns for quantum algorithms of previous works [10, 11] and describe funda-
mentals of hybrid algorithms in Section 2. Then, we present the six new patterns
for hybrid algorithms in Section 3. Related work is described in Section 4. Finally,
a conclusion and overview of future work is given in Section 5.

2 Patterns for Quantum Algorithms

In this section, we introduce fundamentals and patterns for quantum algorithms.
First, the structure of hybrid algorithms is described and an overview of exist-
ing [12, 10, 11] and new patterns is given (Section 2.1). This is followed by Sec-
tion 2.2 that introduces our pattern format and method for pattern authoring.

2.1 Overview of Patterns for Quantum Algorithms

Figure 1 illustrates the basic structure of hybrid algorithms. The first step on a
classical computer is pre-processing. A simple example for a pre-processing task
is the normalization of input data, however, more complex tasks are also possi-
ble. On a quantum computer, the first step is always to prepare an initial state
of a qubit register. Note that this step can also be used to load data which is
usually done by encoding it into the initial state. The resulting state can also be
entangled which is one characteristic of quantum states described by patterns of
the quantum states category. Additionally, data encoding patterns in the upper
left of the figure describe in more detail how this can be realized for a particular
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Fig. 1. Overview of previous and new patterns (in bold), adapted from [10].

encoding. In the next step, the quantum computer performs unitary transfor-
mations. Patterns of the same category describe common transformations, for
example, the application of a Phase Shift to mark a particular amplitude. Fi-
nally, all or a subset of the qubits are measured. The measurement results are
post-processed on a classical computer. Depending on the overall goal, the algo-
rithm terminates or iterates. Patterns of the category program flow (including
the new patterns) describe higher-level strategies for quantum algorithms.

2.2 Pattern Format and Method

For the structure of our patterns, we used a pattern format of previous work [10,
11]. A pattern is introduced by a Name and represented graphically as an Icon.
A pattern name can also be inspired by the name of a prominent algorithm
that applies the pattern. Other names under which this pattern may be known
are listed as an Alias. This is followed by the Context of a pattern, which in-
cludes a description of the problem. Next, its Forces are described that must
be considered when solving the problem. Then, the Solution is described and
often visualized by a Sketch. The consequences are described as the Result of
the solutions. Finally, Related Patterns and Known Uses are listed.

To identify the patterns, we analyzed the structure of hybrid algorithms doc-
umented in the quantum computing literature. If we found various occurrences
of a splitting approach (for example, in publications introducing quantum algo-
rithms or in implementations of algorithms) which is also regarded as promising
in the literature, we authored a pattern. As quantum computing hardware is still
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in an early stage, we do not require concrete implementations as known uses of
the patterns. Instead, we focus on finding and describing re-occurring solutions
in quantum algorithms.

3 Patterns For Hybrid Algorithms

In this section, we present patterns for hybrid algorithms. In previous work [12],
we already introduced the Quantum-Classic Split pattern which motivates
that the computational workload is split between quantum and classical re-
sources. As illustrated in Figure 2, the new patterns further refine this pattern
by introducing best practices for realizing a Quantum-Classic Split. Thus,
the problem, context, and solution of each refining pattern are further specialized
towards a concrete use case [13]. As hybrid algorithms are often not invented
from scratch but extend previously known splitting strategies, we identified sev-
eral other refinement relations as shown in Figure 2. In the following, the most
abstract Quantum-Classic Split [12] pattern is introduced first via a brief
summary and a list of its forces. Note that these are also the forces of all refining
patterns. We then present the new patterns, starting with Quantum Kernel

Estimator (Section 3.2). This is followed by Variational Quantum Al-

gorithm (Section 3.3) and its further refining patterns (Sections 3.4 to 3.6).
Finally, the Warm Start (Section 3.7) pattern is presented. An excerpt of the
patterns can be found at http://quantumcomputingpatterns.org.

VARIATIONAL QUANTUM ALGORITHM

VARIATIONAL QUANTUM

EIGENSOLVER

QUANTUM APPROXIMATE

OPTIMIZATION ALGORITHM

QUANTUM-CLASSIC SPLIT

WARM-START

QUANTUM ALTERNATING

OPERATOR ANSATZ

QUANTUM KERNEL ESTIMATOR

abstract

concrete

Fig. 2. Overview of all patterns presented in this section. A black arrow indicates that
a pattern is further refined by another pattern.
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3.1 Quantum-Classic Split

CC

Summary: Solve a given problem using classical as well as quan-
tum resources (also referred to as hybrid approach). Depending on
the problem, the computational tasks are split between quantum
and classical resources.

Forces: A good split of the computational tasks balances the following forces:

(i) Quantum computations are limited: NISQ devices contain a limited number
of qubits that are not fully connected. The number of operations which can
be executed within the decoherence time of the qubits is also limited [7].
Since the devices are not fully connected, additional operations may be
needed to realize operations on multiple qubits [14].

(ii) It is often not possible to divide quantum computations into smaller parts
as for example a superposition of inputs needs to be processed at once.

3.2 Quantum Kernel Estimator (QKE)

𝜅(𝑥1, 𝑥2) Use the quantum computer as a kernel estimator for a classical SVM

Context: A classification task must be solved by a support vector machine:
given the set of training data {xi} ⊆ Rd and their corresponding labels yi, a
set of hyper-planes must be found that separates data points according to their
labels. Additionally, the distance from the data points to the separating hyper-
plane (the margin) must be maximized to classify unseen data points with a high
probability. However, the data set may not be linearly separable in the original
data space.

Solution: Use a quantum computer to compute the kernel function, i.e., the
squared inner products between data points in the feature space. Only the value
of the kernel function for every pair of data points is needed to optimize the
classical SVM. Instead of computing a classical kernel function, a quantum com-
puter uses a quantum feature map φ (see Figure 3) to encode a data point x
into the Hilbert Space of a quantum system. By encoding a pair of data-points
(x, x′), the quantum computer can then estimate the inner product 〈φ(x)|φ(x′)〉,
for example by using the SWAP test routine [15]. Based on the inner product,
the kernel function K(x, x′) = | 〈φ(x)|φ(x′)〉 |2 can be computed for the data
pair and used for the training of the classical SVM.
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ΦData Space
Feature Hilbert Space

Fig. 3. The quantum feature map φ encodes data-points into the Hilbert Space.

Result: The training and classification of the classical support vector machine
is efficient if the inner products between data points in the feature space can be
evaluated efficiently. Therefore, this setup allows to use feature mappings that
cannot be computed efficiently on a classical computer. However, it remains an
open research question how a suitable quantum feature map can be chosen.

Related Patterns: This pattern refines Quantum-Classic Split.

Known Uses: In the original paper of the algorithm [16], the authors also
demonstrated it in a proof-of-principle experiment on two qubits. Independently,
Schuld et al. [15] published the same algorithm and additionally introduced a
feature map for continuous-variable quantum systems. Since then, an additional
proof-of-principle experiment followed which demonstrated that photonic qubits
can be used for this particular task [17]. The approach was also extended in [18].
We implemented this pattern in the QHAna1 project [19], and also provided a
user interface for the selection of different feature maps.

3.3 Variational Quantum Algorithm (VQA)

CC𝜃 Optimize the parameters of a quantum circuit on a classical computer

Context: For a given problem, the solution space and, thus, all potential solu-
tions are known. The overall goal is to find the best solution or a solution that
is sufficiently good for the task at hand. Since each solution can be evaluated by
an objective function, different solutions can be compared with respect to their
costs. The objective function C must be faithful, i.e., the minimum of C corre-
sponds to the best solution [20]. Ideally, it is also operationally meaningful such
that smaller values indicate better solutions [20]. However, as the solution space
grows exponentially with the problem size, it is difficult to identify the best
solution. Consequently, a brute force approach, i.e., calculating the objective

1 https://github.com/UST-QuAntiL/qhana
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function of all solutions, is often only feasible for small problem sizes. Therefore,
another approach is to approximate the best solution, i.e., find a solution for
which the objective function is close to the minimum.

Solution: To evaluate the cost of a solution, a quantum and a classical computer
are used (see Figure 4). The quantum computation (indicated by the quantum
circuit in the upper part of Figure 4) is structured as follows:

First, an initial state |ψin(x)〉 is prepared which may also depend on a set
of input data x. Then, an ansatz circuit U(θ) is applied to the initial state
producing the output state |ψout(x, θ)〉. An ansatz is a unitary operation that is
varied by a set of parameters θ. An often-used example of an ansatz is a rotation
operation on multiple qubits where the angle depends on θ.

Classical Computer

Quantum  Computer𝑆(𝑥) 𝑈(𝜃)
State Preparation Ansatz Measurement

|0〉|0〉|0〉|0〉|0〉

𝐶(𝜃)
Evaluate Cost

arg m𝑖𝑛𝜃 𝐶(𝜃)
Optimize 𝜽

𝑥, 𝜃

expectation

values

Fig. 4. Quantum-classical setup in which the quantum computation depends on a set
of parameters θ updated by an optimization routine running on a classical computer.

Based on the measured expectation values, the value of the objective function
for the chosen parameter θ is computed by the classical computer:

C(θ) =
∑

i

fi(〈Oi〉|ψout(x,θ)〉
) (1)

where Oi is the observable associated with the i-th measurement, 〈Oi〉|ψout(x,θ)〉

is the expectation value for this measurement, and f is a function that asso-
ciates the expectation values with an overall cost. If the termination condition
is fulfilled, e.g., if C(θ) is sufficiently low, the algorithm terminates. Otherwise,
an updated parameter can be obtained by either an optimization technique [20]
for a new iteration.
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Result: A major drawback of this approach is that it is not trivial to choose a
suitable function f , the observables for the measurements, and a good ansatz.
How fast the solution converges depends on the objective function as well as
the chosen optimization strategy. In particular, barren plateaus which are re-
gions of the objective function with a small norm of the gradient can slow down
this process even further [20] or even worse may result in non-convergence of
the overall algorithm. Since the classical computer performs the optimization,
classical computations can also contribute significantly to the overall runtime
complexity.

Related Patterns: This pattern refines Quantum-Classic Split [12] and
uses State Preparation [12].

Known Uses: There are plenty of known uses for this pattern. For example,
variational quantum algorithms for quantum classifiers [21], quantum neural
networks [22], a quantum support vector machine [16, 15], and an alternative to
Shor’s algorithm for factoring prime numbers [23] exist.

3.4 Variational Quantum Eigensolver (VQE)

1 ⋯ 0⋮ ⋱ ⋮3 ⋯ 5𝜆 Approximate the lowest eigenvalue of a matrix

Alias: Quantum Variational Eigensolver (QVE) [21]

Context: The goal is to find the lowest eigenvalue λ of a hermitian matrix H.
The hardware requirements for Quantum phase estimation (QPE) are beyond
those of NISQ devices, and thus, an approach for NISQ devices is needed.

Solution: Write H as a linear combination of Pauli strings:

H =
∑

α

hαPα (2)

Following the structure of Variational Quantum Algorithm, prepare trial
states by using a suitable ansatz. For example, the unitary coupled cluster
ansatz [24] or a hardware-efficient ansatz [20] can be used. Then, the objective
function is the sum of the expectation values of the Pauli strings:

C(θ) = 〈ψ(θ)|H|ψ(θ)〉 =
∑

α

hα 〈ψ(θ)|Pα|ψ(θ)〉 (3)

By the variational principle, the expectation value is always greater or equal
to the smallest eigenvalue of H. Optimize and update the parameters as de-
scribed in Variational Quantum Algorithm.
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Result: Analogously to Variational Quantum Algorithm, the result, and
performance of this approach depend on the objective function, the choice of
the ansatz as well as the optimization strategy. The lowest eigenvalue is ap-
proximated and can be used to find other eigenvalues (see known uses). This is
especially useful for dimension reduction based on principal component analysis
(PCA) which requires all eigenvalues of the matrix.

Related Patterns: This pattern refines Variational Quantum Algorithm.

Known Uses: Based on the original algorithm [25] of Peruzzo et al., an ap-
proach for finding all eigenvalues of a given matrix was proposed [26]. In quantum
chemistry, this algorithm is especially useful for finding ground states of chemi-
cal systems and has been applied to various systems [27]. The recently founded
Quantum Technology and Application Consortium (QUTAC)2 identified this
algorithm as a possible solution for various industry applications [28].

3.5 Alternating Operator Ansatz (AOA)

𝐶(𝛾) 𝐵(𝛽) Approximate the solution of an optimization problem

Context: A given combinatorial optimization problem must be solved that
consists of n binary variables and m clauses which each depend on a subset of
the variables. A solution is specified as a bit string z = z1 . . . zn that assigns each
binary variable zi to either 0 or 1. The domain is the set of all feasible solutions.
Typically a larger configuration space (e.g., all possible bit strings z of length
n) is constrained to a subset [29]. The objective function C(z) for a solution is
the number of clauses fulfilled by its bit string z:

C(z) =

m
∑

j=1

Cj(z) where Cα(z) =

{

1, if Cα is fulfilled by z

0, otherwise
(4)

Evaluating the objective function for a certain solution is not computationally
intensive, but identifying the best solution, i.e., finding the solution which min-
imizes or maximizes the objective function, is. To circumvent this difficulty,
heuristic approaches can be used in order to find a solution whose value of the
objective function is close to the maximum or minimum of the objective function.

Solution: Like in VQA, an initial state |s〉 is created (see Figure 5) and an
ansatz is constructed based on a phase-separating operator U(C, γ) and a mixing
operator U(B, β) which depend on the parameter sets γ and β.

2 https://www.qutac.de/



10 Weigold et al.

Classical Computer

Quantum  Computer

State Prep. Alternating Operator Ansatz Measurement

𝐶(𝛾, 𝛽)
Evaluate Cost

arg min𝛾,𝛽 𝐶(𝛾, 𝛽 )
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𝛾, 𝛽 |0〉 …|0〉|0〉 S(x) 𝑈(𝐶, 𝛾1) …
… ⋮⋮ U(𝐵, 𝛽1) ⋮ 𝑈(𝐶, 𝛾𝑝) U(𝐵, 𝛽𝑝)

Fig. 5. Quantum Alternating Operator Ansatz.

The initial state |s〉 is assumed to be created in constant depth, which in
general is not possible for some quantum states. For example, |s〉 can be a state
that represents one single solution. Alternatively, a superposition of suitable
solutions can be created.

The separating phase operator encodes the objective function and changes
the phase of a computational basis state |y〉 according to C(y):

U(C, γ) |y〉 = f(y) |y〉 (5)

For example, U(C, γ) can be defined such that a phase shift is applied to |y〉 for
every fulfilled clause. The mixing operator U(B, β) changes the amplitudes of
the solutions. In particular, it must be possible to transition from any solution
to every other solution, i.e., for every pair (|x〉 , |y〉) of computational basis states
within the problem domain there exist some parameter β∗ for which U(B, β∗)
provides a transition between them. Therefore, this operator depends on the
structure of the domain.

The solution creates on a quantum computer the initial state |s〉 and applies
unitaries drawn from C(γ) and B(β) in alternation. This results in the following
state:

|γ, β〉 = U(B, βp)U(C, γp) . . . U(B, β1)U(C, γ1) |s〉 (6)

where γ, β can be initialized randomly at first and p ∈ N is a hyper-parameter.
Measurement then results in a single solution z for which C(z) can be evaluated.
By sampling, the expectation value for γ, β can be determined. Because |γ, β〉
is a linear combination of computational basis states, its expectation value is
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always smaller or equal to the objective function for the best solution z′:

〈C〉|γ,β〉 = 〈γ, β|C|γ, β〉 =

〈

∑

xz |z〉

∣

∣

∣

∣

∑

xzf(z) |z〉

〉

(7)

=
∑

|xz|
2f(z) ≤

∑

|xz|
2f(z′) = f(z′) = Cmax (8)

The expectation values of variations of the parameters can then be used to
optimize the angles for optimizing the objective function and thus, update γ and
β. This is repeated until the termination condition is fulfilled (e.g„ a solution z

is found for which C(z) is above a certain threshold).

Result: This is an approach that is suitable for NISQ devices and can be
adapted to a specific configuration space. As the width of the circuit depends
on p, only small values of p are suitable for NISQ devices. However, it is not at
all trivial how to construct suitable separating phase and mixing operators for a
concrete problem. Although [29] gives several examples of operators for a variety
of problems, further research regarding the design of these operators is needed.
Analogously to VQA, the choice of the operators (which define the ansatz), the
objective function, and the chosen optimization strategy influence how fast the
solution converges.

Related Patterns: This pattern refines VQA (the varied parameters are β
and γ) and can be combined with Warm Start. Solutions are represented in
Basis Encoding [10]. The phase separating operator uses a Phase Shift [12]
to mark suitable solutions based on their objective function.

Variations: Besides using computational basis states to represent solutions,
also other encodings such as one-hot encoding are possible.

Known Uses: In the original paper [29] that introduces this algorithm, the
authors give plenty of examples of how their approach can be applied to a variety
of optimization problems and emphasize that is suitable for a broader range of
applications. The approach has been used in [30, 31].

3.6 Quantum Approximate Optimization Algorithm
(QAOA)

$ Approximate the solution of an optimization problem

Context: Similar to AOA, an optimization problem must be solved (see Con-
text of AOA for a detailed description) and thus, an objective function is given.
In contrast to AOA, the domain of possible solutions is not constrained, and
therefore, every bit string z = z1 . . . zn is a possible solution of the problem.
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Solution: Figure 6 illustrates the Quantum Approximate Optimization Algo-
rithm (QAOA) [32] that follows the structure described in AOA. |s〉 is prepared

Quantum  Computer

State Prep. Alternating Operator Ansatz Measurement

𝐶(𝛾, 𝛽)
Evaluate Cost

arg min𝛾,𝛽 𝐶(𝛾, 𝛽 )
Optimize 𝜸, 𝜷

𝛾, 𝛽 …|0〉 H 𝑅𝑥(2𝛽1)|0〉 H 𝑅𝑥(2𝛽1)|0〉 H 𝑅𝑥(2𝛽1)𝑈(𝐶, 𝛾1) …
… ⋮⋮⋮⋮ 𝑅𝑥(2𝛽𝑝)𝑅𝑥(2𝛽𝑝)𝑅𝑥(2𝛽𝑝)𝑈(𝐶, 𝛾1) ⋮

Fig. 6. Overview of QAOA.

as the Uniform Superposition [12] that represents all possible solutions in
Basis Encoding [10]. For example, |0 . . . 0〉 represents the solution where all
variables are assigned to 0, |0 . . . 01〉 represents z = 00 . . . 01, etc.

The two operators U(C, γ) and U(B, β) are defined as follows:

U(C, γ) = eiγC =

m
∏

α=1

e−iγCα ; U(B, β) = e−iβB =

n
∏

j=1

e−iβσ
j
x (9)

For every clause, U(C, γ) applies a phase shift e−iγ to every computational basis
state that fulfills it. As this only marks but does not affect the amplitude of
the solutions, U(B, γ) is needed to “mix” their amplitudes. This is realized as a
rotation around the X-axis with an angle of 2β (Rx(2β)).

Following the structure described in AOA, |γ, β〉 is prepared. Measuring all
qubits then results in a single solution (the bit string z), for which the objective
function can be evaluated. The parameters β and γ are first chosen at random
and then iteratively updated until the termination condition is fulfilled.

Result: This approach is regarded as a promising approach to solve optimiza-
tion problems on NISQ devices since the required circuit depth is shallow (at
most mp+ p [32]).
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For p → ∞ and suitable small values for γ, β, it approximates the best
solution.3 However, the performance of QAOA depends on the optimization
strategy for the angles β, γ and the objective function.

Related Patterns: This pattern creates a Uniform Superposition [12] in
the State Preparation [12] of the algorithm. Solutions are represented in
Basis Encoding. This pattern refines AOA, and thus, also makes use of Phase

Shift [12].

Known Uses: In the initial publication [32], the algorithm was applied to
MaxCut. The authors also showed a quantum advantage for the bounded occur-
rence problem [34] which led to the discovery of a better classical algorithm [35].
QUTAC4 expects that numerous industrial optimization use cases may benefit
from quantum computing in the future for which QAOA is one possible ap-
proach [28].

3.7 Warm Start

Fine-tune an optimization algorithm by warm starting it

Context: A solution to an optimization problem (see AOA for a detailed de-
scription) must be found. Assuming that the Unique Game Conjecture (UGC) is
true, there is a theoretical upper bound for the approximation ratio of efficient
classical methods, i.e., they can only guarantee to approximate the best solution
to a certain degree. Since the UGC does not hold for algorithms that exploit en-
tanglement, corresponding quantum algorithms can approximate beyond these
bounds.

Solution: Use a classical method to find an approximate solution of the prob-
lem. Often, an approximated solution to the original problem can be found solv-
ing a simpler, related problem, e.g., for which some of the constraints of the
original problem are relaxed.

Result: Warm starting results in a good initial starting solution (near the op-
timum) which is then used as the start-point for the optimization of the original
problem. However, the classical optimization for the related problem also con-
tributes to the overall runtime complexity.

3 [33] proves this by showing how this algorithm relates to the adiabatic algorithm [33],
which also inspired the ansatz of the algorithm.

4 https://www.qutac.de/



14 Weigold et al.

Related Patterns: This pattern can be specialized for QAOA or VQE.

Known Uses: For the MaxCut [36] problem and quadratic optimization prob-
lems [37] the warm start of a QAOA was proposed and improved the perfor-
mance of the optimization. The approach followed in [38] can also be seen as an
example for warm starting VQE [37].

4 Related Work

In this work, we use the concept of patterns as introduced by Alexander et al. [39].
The new patterns presented complement quantum computing patterns of pre-
vious work [12, 10, 11]. Out of the 15 previous patterns, 13 patterns focus on
quantum computations (see Section 2), whereas all new hybrid patterns com-
prise quantum as well as classical computations. To our best knowledge, there
exist no other patterns for quantum computing that conform to the notion of
patterns of Alexander et al. [39].

Since the appearance of the first quantum algorithms, numerous algorithms
have followed. The most extensive catalog of quantum algorithms known to us
is presented at Quantum Algorithm Zoo5 which summarizes algorithms of three
categories. An high-level overview of current quantum machine learning algo-
rithms can be found in [40]. The authors also identified whether Grover’s search
algorithm [41] (a special case of our Amplitude Amplification pattern [12])
was used as subroutine. Since VQE [25] and QAOA [32] are the most promi-
nent variational algorithms, they have been described on a higher level [19, 42,
43, 40] and a more technical level [44, 45] in various other works. In contrast to
this work, none of the works describes these proven solutions as interconnected
patterns which build on each other to solve larger problems.

In the literature, the term “hybrid quantum-classical algorithms” is some-
times used as a synonym [46, 45] for variational algorithms neglecting hybrid
algorithms that are not variational. In this work, we consider hybrid algorithms
to include all algorithms consisting of both quantum and classical computations.
This for example also includes the hybrid quantum linear equation algorithm
[47] or Shor’s algorithm [5]. The challenges listed in the Variational Quan-

tum Algorithm pattern are active research areas, such as choosing a suitable
ansatz [46] or optimization strategy. An extensive overview of challenges and
applications of variational algorithms can be found in [20].

Lloyd [48] proved the universality of the quantum approximate optimization
algorithm, i.e., any unitary operator (thus, any quantum algorithm) can in prin-
ciple be approximated. In [49], the theoretical connections between variational
algorithms (which use the structure in our Quantum Variational Algo-

rithm pattern) and kernel-based methods (for which our QKE pattern is the
standard example) are explored. The author concludes that especially in the
near future, kernel-based methods are an appealing alternative to variational

5 https://quantumalgorithmzoo.org/
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methods. These theoretical results can be regarded as further evidence why the
patterns identified by us are proven solutions.

5 Conclusion and Future Work

Especially in interdisciplinary collaborations for building software systems for
quantum algorithms, a common understanding of interactions between quan-
tum and classical computers is needed [50]. This work introduced six patterns
for hybrid algorithms which refine the Quantum-Classic Split pattern of
our previous work [12]. We also describe the relations between them, which re-
flect that hybrid algorithms often extend previous approaches and are therefore
similar in their structure. All of the newly presented patterns try to limit com-
putations on NISQ devices as much as possible. Note that we do not claim that
this list of patterns for hybrid algorithms is exhaustive. For example, it should
be further investigated if following a divide-and-conquer approach to split up
computational tasks until they are suitable for a NISQ device also qualifies as
another hybrid pattern. As the hardware improves it may be possible to divide
the computational load differently in the future.

The patterns extend our collection of patterns of previous work [12, 10, 11].
In the future, we plan to collect more patterns and further known uses of our
patterns within the PlanQK6 platform. As quantum computing is still in an
early stage and hardware improvements constantly open up new possibilities,
the patterns presented and their potential applications should be re-evaluated.
Following best practices for pattern writing [51], therefore, we plan to revisit
and re-evaluate the quality and validity of patterns within the community.
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