
Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

{wild, breitenbuecher, harzenetter, leymann, vietz, zimmermann}@iaas.uni-stuttgart.de

TOSCA4QC:
Two Modeling Styles for TOSCA to Automate the

Deployment and Orchestration of Quantum Applications

© 2020 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Wild2020_TOSCA4QC,
author = {Wild, Karoline; Breitenb{\"u}cher, Uwe; Harzenetter, Lukas;

Leymann, Frank; Vietz, Daniel; Zimmermann; Michael},
title = {{TOSCA4QC: Two Modeling Styles for TOSCA to Automate the

Deployment and Orchestration of Quantum Applications}},
booktitle = {Proceedings of the 24th International Enterprise Distributed

Object Computing Conference (EDOC 2020)},
publisher = {IEEE},
year = 2020,
month = oct,
pages = {125--134},
doi = {10.1109/EDOC49727.2020.00024}

}

:

Institute of Architecture of Application Systems

Karoline Wild, Uwe Breitenbücher, Lukas Harzenetter, Frank Leymann,
Daniel Vietz, and Michael Zimmermann

TOSCA4QC: Two Modeling Styles for TOSCA
to Automate the Deployment and Orchestration

of Quantum Applications
Karoline Wild, Uwe Breitenbücher, Lukas Harzenetter, Frank Leymann, Daniel Vietz, and Michael Zimmermann

Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
{wild, breitenbuecher, harzenetter, leymann, vietz, zimmermann}@iaas.uni-stuttgart.de

Abstract—Quantum computing introduces a new computing
paradigm that promises to solve problems that cannot be solved
by classical computers efficiently. Thus, quantum applications
will be more and more integrated in classical applications. To
bring these composite applications into production, technologies
for an automated deployment and orchestration are required to
avoid manual error-prone and time-consuming processes. For
non-quantum applications, a variety of deployment technologies
have been developed in recent years. However, the deployment
of quantum applications currently differs significantly from non-
quantum applications and thus, leads to a different modeling
procedure for the deployment of quantum applications. To
overcome these problems, we propose TOSCA4QC that introduces
two deployment modeling styles based on the Topology and
Orchestration Specification for Cloud Applications (TOSCA)
standard for automating the deployment and orchestration of
quantum applications: (i) SDK-specific modeling style to cover
all technical deployment details and (ii) SDK-agnostic modeling
style supporting common modeling principles. We further show
how existing model-driven development (MDD) approach can
be applied to refine a SDK-agnostic model to an executable
SDK-specific model. We demonstrate the practical feasibility by
a prototypical implementation as an extension of the TOSCA
ecosystem OpenTOSCA and three case studies with IBMQ and a
quantum simulator.

Index Terms—TOSCA, Quantum Computing, Deployment
Automation, Modeling, Orchestration

I. INTRODUCTION

Quantum computing introduced a completely new computing
paradigm. By exploiting quantum mechanical effects such as
superposition and entanglement, quantum computing promises
to solve problems that cannot be solved or not solved efficiently
with conventional computers [1]–[3]. Since quantum computing
offers an advantage especially for certain problem classes, quan-
tum applications will be more and more integrated in classical
applications. However, this integration also requires deployment
and orchestration automation to avoid time-consuming and
error-prone manual processes [4].

For deployment and orchestration automation, a variety of
technologies have been developed in the last years. Thereby
declarative deployment technologies, such as Terraform, Ku-
bernetes, or the Topology and Orchestration Specification for
Cloud Applications (TOSCA) standard, have prevailed [5].
A declarative deployment model enables the specification of
application deployments by modeling the application’s structure
consisting of its components and their relations [6]. These

technologies are typically extensible by providing features
to support deploying new component types on new target
infrastructures. Especially the TOSCA standard has shown to
be highly extensible: Beyond cloud computing, it has been
adopted also in other areas [7], e. g., Internet of Things [8]–[10]
and Network Function Virtualization Orchestration [11], [12].

However, the current state-of-the-art of available quantum
platforms and providers introduces some special characteristics
regarding the deployment of quantum applications that violate
the principles supported by common deployment technologies.
First, quantum applications must be newly deployed for
each invocation in contrast to classical applications, which
have to be deployed only once and can be invoked multiple
times afterwards. Second, an application’s code is typically
hosted on the environment it is actually executed on, as
it is, e. g., known from existing cloud service models such
as Infrastructure-as-a-Service (IaaS). In contrast, currently
hosting a quantum application’s code is not supported by
today’s Quantum-as-a-Service (QaaS) offerings. Therefore,
the code of a quantum application must be hosted on an
external, conventional computing resource, where a software
development kit is available that is capable of compiling the
quantum algorithm and managing its actual deployment on
a selected quantum computer during runtime. Consequently,
extending existing deployment technologies to support the
deployment and orchestration of quantum applications requires
special consideration and, without special consideration, leads
to a modeling process that is not consistent with established
modeling concepts known from non-quantum applications.

To meet these challenges, we exploit the extensibility of
TOSCA and introduce TOSCA4QC that defines two deployment
modeling styles to automate the deployment and orchestration of
quantum applications: (i) the SDK-specific (SDK-S) modeling
style, which covers all technical details and (ii) the SDK-
agnostic (SDK-A) modeling style, which reflects common
modeling principles known from classical applications while
hiding technical details. We further show how a model-driven
development (MDD) approach [13] can be used to refine
a SDK-A model to an executable SDK-S model. To proof
the practical feasibility the open-source TOSCA ecosystem
OpenTOSCA [14] has been extended and three case studies
based on IBMQ and a quantum simulator has been developed.

Quantum Application

c = lib.Circuit()
…

b = lib.getBackend()
res = c.execute(…)

…

@app.route('/jobs', methods=['POST’]
create _job()

…
API

Deployment

Quantum Circuit

Figure 1. Components of a quantum application

II. FUNDAMENTALS, MOTIVATION,
AND PROBLEM STATEMENT

In this section we first introduce the fundamentals of quantum
computing, quantum providers, and quantum applications. We
then introduce two key principles of deployment technologies,
which are based on the characteristics of classical applications.
Based on that, the problem statements are summarized. Finally,
the key elements of the TOSCA standard are briefly introduced.

A. Quantum Computing in the NISQ Era

Quantum computing is a completely new computing
paradigm, and the quantum computers are in an early stage.
Similar to bits in conventional computers, quantum computers
consist of so-called quantum bits (qubits) [15]. While bits are
either in state 0 or 1, qubits can be in both states at the same
time, called superposition [15], [16]. Superposition, which
implies quantum parallelism, and the entaglement of qubits
are the drivers behind the speedup compared to conventional
computers. However, current generations of quantum computers
are limited with regard to several properties [2]: (i) The number
of qubits is limited and, thus, the calculable problem size is
restricted, (ii) operations on qubits are inaccurate, and (iii)
qubits can hold their state stable only for a limited amount of
time, i. e., they are “noisy”. Due to these limitations, quantum
computers in this era are often called Noisy Intermediate Scale
Quantum (NISQ) computers [2].

For the quantum computation itself there are currently
various quantum computation models, such as gate-based [17],
measurement-based [18], or adiabatic [19]. In the gate-based
model, on which we focus in this paper, operations are
represented as gates which are applied to qubits. To retrieve the
result of a computation, the values of the qubits are measured
and interpreted. A sequence of gates applied on qubits and
their measurement form a so-called quantum circuit [15]. To
compile, execute, and integrate a quantum circuit into a non-
quantum application, additional logic is required, which is
discussed in the next section.

B. Quantum Application and Quantum Service Provider

For implementing and executing quantum circuits, several
software development kits (SDKs) exist that provide a set of
libraries and tools. In Table I, an excerpt of existing SDKs with
their supported programming languages and quantum cloud
offerings is shown. All programming languages are embedded
in existing languages such as Python or C++, only Q# is a new
one tailored to quantum algorithms. While IBMQ and Rigetti

Table I
EXCERPT OF AVAILABLE QUANTUM SDKS, THEIR PROGRAMMING

LANGUAGES, AND SUPPORTED QUANTUM CLOUD PROVIDERS.

SDK Progr. Language Cloud Providers
IBMQ Rigetti Azure*

Qiskit Qiskit (Python) x
Forest pyQuil (Python) x
QDK Q# x

XACC XACC (C++, Python) x x
Pennylane Pennylane (Python) x x (x)

already provide publicly available QaaS offerings, Azure only
announced an upcoming service. Nevertheless, they already
provide a SDK called Quantum Development Kit (QDK) [20]
which can be used for simulating quantum algorithms. These
SDKs include compilers to translate the quantum circuit
into quantum computing languages and connectors to cloud
providers and their QaaS offerings [17]. Thus, the quantum
circuit itself is just a part of a quantum application as depicted
in Figure 1. Methods to select a quantum computer, compile
and execute the circuit, and an API to enable the invocation of
the quantum algorithm are essential parts of today’s quantum
applications. Thus, the code of a quantum application must be
persistently hosted on a conventional compute resource where
the respective SDK is installed, but the compiled circuit is
actually executed on a quantum computer.

As shown in Table I, two different kinds of SDKs exists:
On the one hand, Qiskit [21], Forest [22], and QDK which
are provider-specific SDKs designed to meet the needs of
the quantum computers made available by the quantum
computer vendors themselves through the cloud. On the other
hand, third-party provider-independent SDKs that potentially
support multiple quantum providers, such as XACC [23] and
Pennylane [24], have emerged. XACC supports two gate-based
providers, IBMQ and Rigetti, but also D-wave which supports
an adiabatic quantum computation model. Also Pennylane
supports IBMQ and Rigetti, but also a photonic quantum
computer and the QDK simulator. Thus, in order to implement
and run a quantum application, such a SDK must currently be
installed on a conventional computer to host the actual code,
compile the quantum circuit, and to run it on the selected
quantum computer. Cloud providers, such as AWS, announced
to offer quantum computers from various vendors via the
cloud [25]. Hence, new service delivery models could be
available soon, which may be able to operate without external
resources to execute a quantum circuit.

C. Deployment Principles

For automating the deployment and orchestration of classical
applications a variety of deployment technologies exist. In gen-
eral two deployment modeling approach can be distinguished:
declarative and imperative deployment modeling technolo-
gies [6]. While declarative models describe the structure of
applications with their components and relations, imperative
models explicitly describe the operations and their order in
which they have to be executed to deploy an application. In

practice, declarative deployment technologies have become
established [5], [26]. Among the widely used technologies that
follow the declarative modeling approach are Chef, Terraform,
CloudFormation, Kubernetes, but also the TOSCA standard,
which is described in more detail in Section II-E. In previous
work, we investigated 13 declarative deployment technologies
to analyze their common modeling meta model [5]. In this work,
we continued our analysis by deriving two basis deployment
principles of classical applications that are supported by all
13 declarative deployment technologies and that determine
the provisioning order of the application’s components [27]:
(i) Host-and-Execute and (ii) Deploy-Before-Invoke. Both
principles are described in detail below.

Figure 2 depicts a declarative deployment model of a clas-
sical application that consists of two application components,
Web App and Order Processor. The WebApp is hosted on AWS
Elastic Beanstalk and the Order Processor on an Ubuntu virtual
machine where Java in installed. In both cases is the hosting
environment equivalent to the execution environment. Thus,
the first deployment principle is as follows:

Deployment Principle (DP) 1 Host-Executes-
Application: “If the deployment model specifies
that an application is hosted on another component, this
other component executes the application.”

Moreover, the Web App has to be connected to the Order
Processor. However, the Web App can only connect to the Order
Processor if it exists, i. e., if the Order Processor component is
deployed in advance. Thus, the second deployment principle
is as follows:

Deployment Principle (DP) 2 Deploy-Before-Invoke:
“ If the deployment model specifies that an application
component invokes another component, the invoked
component must be deployed before the invocation
can take place, i. e., before the deployment technology
establishes the connection between the components.”

These principles are driven by the "nature" of classical applica-
tions and compute resources. They form the key principles every
declarative deployment technology is following and which
specify a common understanding of the deployment order of
classical application components.

D. Problem Statements and Research Questions

The two deployment principles described in the previous
section are violated by current quantum SDKs and QaaS
offerings. First, the code of the quantum application including
the quantum circuit has to be persistently hosted on external
conventional compute resources, but the quantum circuit is
executed by a quantum computer and not by the conventional
computing resource on which it is hosted (DP1). Second,
for each invocation the quantum circuit has to be compiled
depending on the input data [29], and then the compiled
quantum circuit is sent to and executed by the selected quantum
computer provided by a cloud services (DP2). The compilation,

install.sh </>

Order Processor
(Java 11 App)

Web App
(Java 11 Servlet)

Port: 80

P1

Port: 8080

Elastic Beanstalk
(Elastic Beanstalk)

Scaling: AutoScaling
[…]

Java Runtime
(Java 11 Runtime)

[…]

AWS
(AWS)

Region: EU
[…]

Ubuntu
(Ubuntu 18.04)

[…]

OpenStack
(OpenStack)

API: https://stack.iaas.deconnectsTo
hostedOn

Relationship types:

Deployment
artifact

Implementation
artifact

Legend:

Figure 2. Exemplary Deployment Model (notation adapted from [28])

deployment, and execution of the quantum circuit is handled
by a SDK, such as Qiskit, deployed on the external compute
resource. As a result compilation, deployment, and execution
of quantum circuits cannot be separated yet and are executed
during runtime for each invocation of the quantum application.
Thus, the first research question (RQ) is as follows:

RQ 1 “How can the deployment and orchestration of
quantum applications be automated if deployment and
invocation cannot be separated?”

The deployment of quantum applications not only violates
the two key deployment principles but also requires in-
depth knowledge about the quantum computers, the quantum
providers, and the SDKs [29]. Depending on the used pro-
gramming language or libraries for implementing the quantum
application only a specific SDK can be used and, thus, the set
of available quantum computers is reduced [30]. Especially
for modelers who are not familiar with the technical details
of quantum applications and focus on the integration with
non-quantum applications, it is time-consuming and error-
prone to orchestrate all technical details for the deployment
correctly. Moreover, a holistic modeling approach that follows
the same modeling principles for both, quantum and non-
quantum applications, enables the modeling of composite
applications. Thus, the second research question is as follows:

RQ 2 “How can the deployment and orchestration of
quantum applications be modeled in a way that reflects
common modeling principles?”

E. The Topology and Orchestration Specification for Cloud
Applications (TOSCA) Standard

Among the many domain-specific languages used by various
deployment technologies, TOSCA is the only standardized
modeling language [31], [32]. It is an OASIS standard originally
developed for defining deployment models for automating
the deployment and orchestration of cloud applications. The
central element in TOSCA is the service template which
comprises (i) the structure of the application in the form of a
topology template and (ii) management plans that encompass
the knowledge about managing the application described as
workflows (e. g., using BPEL or BPMN). Since the structural
description is the primary focus of this paper, we concentrate
on the topology template. In Figure 2 an example of a TOSCA
deployment model is shown. To improve readability, Figure 2
uses a graphical notation for TOSCA instead of XML or YAML,
for which TOSCA is actual available.

A topology template is a directed acyclic graph (DAG) that
describes the structure of an application with its components,
i. e., nodes, as node templates and their relations, i. e., edges,
as relationship templates. This includes application-specific
components as well as middleware and infrastructure compo-
nents. The application shown in Figure 2 is part of an order
application consisting of a web application component, called
Web App, and a processing component, called Order Processor.
The Web App shall be hosted on AWS Elastic Beanstalk,
while the Order Processor will be hosted on an Ubuntu virtual
machine on-premise. The semantics of node templates, as well
as relationship templates, are defined by reusable node types and
relationship types. The TOSCA standard specifies normative
types such as the used relationship types “hostedOn” and
“connectsTo” in Figure 2 or node types such as “Compute” from
which other node types such as “Ubuntu 18.04” are derived. The
hostedOn dependencies form the entire stack of an application
while connectsTo expresses that a communication relation must
be established. With defined properties the configuration of
node and relationship templates can be specified, e.g., the port
number of the Web App or the region of the AWS data center.

For the actual deployment and management of an instance
of a service template both, node types and relationship types,
define lifecycle operations to implement the behaviour of the
orchestration engine. Normative lifecycle operations are create,
configure, start, stop, and delete. The actual executable file
implementing either an operation or a node template itself
is called implementation artifact (IA) if it implements an
operation, or deployment artifact (DA) if it implements a node
template. TOSCA provides also a strong typing for artifacts:
Artifact types and artifact templates that can be added to node
templates. In Figure 2, the install.sh IA for the install-operation
of the Order Processor component and two WAR files as
DAs for the Web App and the Order Processor are shown
as examples. The service template and all artifacts are then
packaged in a self-contained cloud service archive (CSAR)
which can then be processed by any TOSCA-compliant runtime,
e.g., the open-source OpenTOSCA container [14], [33].

III. TOSCA4QC: TOSCA MODELING STYLES
FOR QUANTUM APPLICATIONS

In this section we introduce TOSCA4QC for modeling
the deployment and orchestration of quantum applications.
For this two deployment modeling styles with TOSCA have
been introduced. Since TOSCA provides an ontological typing
mechanism, i. e., new types can be defined without extending
the language definition itself [34], the TOSCA language
definition has not been adapted for the deployment modeling
styles. Before the two modeling styles are introduced, general
aspects are discussed in context of the deployment principles
in Section II-C and the research questions in Section II-D.

A. TOSCA4QC Deployment Modeling Styles Overview

A key aspect of the modeling styles is to be compliant with
the deployment principles of classical applications, while the
resulting models are still deployable despite the non-separability
of deployment and invocation of quantum applications. Since
if the deployment principles are violated the deployment me-
chanics of the deployment engines that process the declarative
deployment models also are violated. An important requirement
of the modeling styles is therefore that they are conform to the
TOSCA standard and the models can therefore be processed by
any TOSCA-compliant deployment engine. A second challenge
is the diversity of stakeholders in the quantum computing
domain in terms of their areas of expertise and technical know-
how. In previous works, different stakeholders have already
been identified [35]–[37]. On the one hand, there are quantum
experts that have in-depth knowledge of existing quantum
algorithms, quantum hardware, and they can implement these
algorithms for specific quantum computers [29]. On the other
hand, there are software developers who only want to integrate
quantum applications to solve specific problems efficiently.

Therefore, in addition to a modeling style that results in a
technically detailed and executable model, which reflects all
SDK-specific properties, but which does not follows common
modeling principles (RQ1), we present a simplified modeling
style, but which is not compliant with the deployment principles
and therefore a resulting model is not executable by a TOSCA-
compliant deployment engine (RQ2), and has to be transformed
before deployment, as described in Section IV. The first style,
the SDK-specific (SDK-S) modeling style, which supports a
detailed and fine-grained modularization of node types and
that specify all technical details, such as the different SDKs
and QaaS, is introduced in Section III-B. A SDK-S model can
directly be processed by each TOSCA-compliant deployment
engine. To make this possible, however, it is not possible
to model where the quantum circuit is actually executed, and
especially for non-quantum experts this differ from their known
modeling approach. Therefore, an additional modeling style,
the SDK-agnostic (SDK-A) modeling style has been defined
and is introduced in Section III-C. A SDK-A model hides
the technical details and enables a simplified modeling for
modelers that are not familiar with all technical details of
quantum computing. However, because the technical details
are hidden, a SDK-A deployment model cannot directly be

install.sh </>

Shor
(Qiskit App)

Port: 8080

IBMQ
(IBMQ)

Token: […]
Backend_Name: […]

Ubuntu
(Ubuntu 18.04)

[…]

Qk-API

Qk-Shor

Python
(Pyhton 3.5)

connectsTo
hostedOn

Relationship types:

Legend:

dependsOn

Qiskit
(Qiskit)

[…]

[…]

Shor
(QC App)

Port: 8080

IBMQ
(IBMQ)

Token: […]
Backend_Name: […]

Web App
(Docker Container)

Port: 80

Docker Engine
(Docker Engine)

[…]

App

Web App
(Docker Container)

Port: 80

Docker Engine
(Docker Engine)

[…]

App

Simplification

Qk-Shor

Figure 3. TOSCA4QC modeling styles: (a) SDK-specific (SDK-S) modeling style on the left and (b) SDK-agnostic (SDK-A) modeling style on the right.

executed by a TOSCA-compliant deployment engine. Thus, in
Section IV we introduce a model-driven development (MDD)
approach to refine a SDK-A deployment model to an executable
SDK-S deployment model in an automated manner.

B. SDK-Specific Modeling Style

In this section the SDK-specific (SDK-S) modeling style with
its characteristics, advantages, and drawbacks is introduced.

1) Characteristics: The SDK-S modeling style defines a
general structure with general required component types: (i) A
SDK-specific quantum application node that represents the
quantum application itself and that is specific for the used SDK,
e. g., a Qiskit App or Pennylane App node type has be be defined
to encapsulate the deployment and invocation logic, since they
cannot be separated yet as well as the circuit developed with
the respective SDK. (ii) A SDK node that represents the SDK
required to compile and execute the quantum circuit which is
part of the quantum application, e. g., a Qiskit or Pennylane
node type has to be defined to install the required packages on
a defined compute resource. (iii) A compute resource to host
the SDK and the application, e. g., an Ubuntu 18.04 or any
other conventional compute resource. (iv) A quantum compute
node that represents the execution environment for the quantum
circuit, e. g., a IBMQ node type, the SDK can connect to.

In Figure 3 on the left, an exemplary SDK-S deployment
model with a quantum application that is invoked by a web
application is shown. The Web App is a Docker Container
that is hostedOn a Docker Engine and that has a connectsTo
relationship to the quantum application. The quantum applica-
tion is a Qiskit App. In the example, Shor, an algorithm for
factorizing numbers in polynomial time [38], has to be deployed.
The Qiskit App node type encompasses not only a DA (Qk-
Shor) containing the quantum algorithm, i. e., in this example
a Python file implementing the Shor algorithm using the Qiskit
SDK, but also a DA (Qk-API) that provides its invocation and
deployment logic. Since the invocation and execution logic is

independent of the algorithm, this DA is reusable for all Qiskit
implementations. The execution of the quantum circuit will
be performed by IBMQ. The IBMQ node type represents the
IBMQ cloud services and is used to configure the execution
of the quantum circuit on IBMQ. This includes a “Token”
required for the authentication at the cloud service’s API and
a “Backend_Name” of the selected quantum computer that
executes the quantum circuit. The Qiskit node requires these
inputs to establish a connection to IBMQ and to invoke the
service during runtime with the compiled circuit. Qiskit is an
open-source SDK that requires a Python 3.5 environment and
must be hosted by an arbitrary compute resource that supports
Python and Qiskit. In this example an Ubuntu 18.04 is used.

2) Advantages: The fine-grained modularization facilitates
a detailed configuration. The modelling style is technically
compliant with both deployment principles: The actual hosting
relations, namely that the quantum application is hosted on
the conventional compute resource, are reflected (DP1) and
since invocation and deployment logic cannot be separate yet,
it is encapsulated in the API DA of the quantum application,
i. e., in this scenario the API receives the invocation calls and
triggers the deployment of the quantum circuit (DP2). Thus, it is
compliant with the deployment mechanics of TOSCA and can
be processed by each TOSCA-compliant deployment engine.

3) Drawbacks: However, by following the principles, the
resulting model implies that nothing is executed on IBMQ
and this is actually not true. One reason for this is that
the quantum circuit cannot be separated from the remaining
quantum application and thus it is not a separate, executable
component in the deployment model. This makes it difficult
for non-experts to understand and apply this modeling style.

C. SDK-Agnostic Modeling Style

To overcome the drawbacks of the SDK-S modeling style and
to provide an modeling approach that reflects common model-
ing principles, in this section the SDK-agnostic (SDK-agnostic)

Model
application topology

Replace
topology fragment

Deploy refined
deployment model

Application
architect

TFRM
repository

Algorithm
developer

Deployment
engine

Detect and select topology
refinement model (TFRM) candidate

1 2 3 4

Figure 4. Topology Refinement Process

modeling style with its characteristics, advantages, and draw-
backs is introduced.

1) Characteristics: The general structure of SDK-A deploy-
ment models consists only of two components: (i) A quantum
application, which in contrast to the quantum application in the
SDK-S style is agnostic to the SDK used. Therefore, only one
general QC App node type is required to define the quantum
application and arbitrary DAs can be attached, e. g., a Qiskit
implementation. (ii) A quantum compute node that is equivalent
to the quantum compute node in the SDK-S style. It represents
the execution environment for the quantum circuit and can
be, e. g., an IBMQ node type. Figure 3 on the right depicts a
SDK-A model which is a simplification of the SDK-S model
on the left. While the non-quantum stack with the Web App
remains the same, the quantum application stack is notably
simplified. In contrast to the SDK-S model, details such as the
required SDK are hidden. The QC App node type represents
any quantum application, in this example the Shor algorithm
implemented with Qiskit is attached, that is hostedOn a QaaS.
In this example, IBMQ is used as execution environment.

2) Advantages: The SDK-S modeling style enables the mod-
eling of the deployment of quantum applications in the same
way as non-quantum applications: The quantum application
representing the quantum circuit to be executed is hosted on
the quantum compute node where it is actually executed.

3) Drawbacks: However, in SDK-A models both deploy-
ment principles are violated, since the quantum application
cannot be hosted on a quantum compute node and thus it
can also not be invoked. Thus, the deployment mechanics of
TOSCA are violated and the model cannot be processed. To
solve this problem for current services, a MDD approach to
refine a SDK-A deployment model to an executable SDK-S
deployment model is presented in the following.

IV. MODEL REFINEMENT AND DEPLOYMENT AUTOMATION

The proposed topology refinement approach follows the con-
cept of MDA and enables refining SDK-A deployment models
into executable SDK-S deployment models in an automated
manner. As soon as offerings such as IBMQ support to host
and integrate quantum circuits into applications by providing
invocation mechanisms, the SDK-A style reflects exactly this
hosting relation, and then, if these two features are available,

both deployment principles holds and a transformation is not
needed anymore. However, for current cloud offerings, the
refinement approach is required to enable both (i) a modeling
approach that reflects common modeling principles and (ii)
compliance with the deployment principles of TOSCA. For
this, we extended the model refinement approach introduced in
previous works [39]–[41]. In the following, first an overview of
the model refinement process is given and then the refinement
mechanism is explained in detail.

A. Model Refinement Process Overview

The model refinement process is shown in Figure 4. It is
adopted and extended from the pattern refinement approach
introduced by Harzenetter et al. [39]. First, the application
topology can be modeled as described in Section III-C (step 1):
A QC App that is hosted on a QaaS depicted in the abstracted
topology with two dark grey node templates. The left stack,
depicted as white node templates, represents an arbitrary non-
quantum application that invokes the functionality provided by
the quantum application. The implementation of the quantum
application can also be attached as DA to the QC App.

To enable the deployment of the quantum application stack,
the model must be refined with the SDK, e. g., Qiskit, and an
operating system, e. g., a virtual machine, hosting the SDK and
the quantum algorithm. However, the refinement depends on
(i) the selected QaaS, (ii) the used SDK for the development
of the quantum algorithm, and (iii) the programming language.
Since a manual refinement is error-prone and time-consuming,
we use an automated approach which identifies the SDK-A
fragment in a topology template that must be refined by a
SDK-S fragment. We hereby use so called topology fragment
refinement models (TFRMs), which are introduced in detail in
the next section. These TFRMs are provided in a repository
(step 2). Based on a detector that describes a SDK-A fragment,
TFRMs are identified as suitable refinement candidates. The so
detected SDK-A fragment in a topology can then be replaced
by the refinement structure defined by the TFRM (step 3). The
refinement structure is a SDK-S fragment with all technical
details required for a fully automated deployment of the
quantum application. In case multiple TFRMs are detected, the
modeler can select the preferred one which is then applied to
the deployment model. Then it can be processed by a TOSCA-

Mappings Refinement StructureDetector

ArtifactMapping

ArtifactType: Qiskit

[…]

(IBMQ)

Token: *
BackendID: *

(IBMQ)

Port: *

(QC App)

RelationType: connectsTo
Direction: ingoing
SourceType: *

RelationMapping

[…]

(Qiskit)

[…]

(Python 3.5)

[…]

(Ubuntu 18.04)

install.sh

Port:

(Qiskit App)

</>

StayMapping

DetectorProperty: Port
RefinementProperty: Port

PropertyMapping

Qk-API

connectsTo
hostedOn

Relationship types:

Deployment
artifact

Implementation
artifact

Legend:

dependsOn

Figure 5. Topology Fragment Refinement Model

compliant deployment engine that instantiates the application
as defined by the topology template (step 4).

The next section describes the TFRM in more detail. The
refinement approach is not only applicable to quantum applica-
tions, but to all applications where reduced model complexity
supports the modeling process and deployment details are only
relevant at deployment time. A similar mechanism has been
applied to process modeling [42].

B. Topology Fragment Refinement Model

To automate the refinement of SDK-A models, we introduce
topology fragment refinement models (TFRMs) which describe
how a topology template fragment which is not deployable
can be refined to concrete components and technologies that
define detailed configuration properties. TFRMs are a further
development of the pattern refinement models (PRMs) already
introduced by Harzenetter et al [39], [41].

A TFRM consists of (i) a topology template called detector,
(ii) a topology template called refinement structure, and (iii) a
set of mappings that define the relation between the elements of
the detector and the refinement structure. An example TFRM
is shown in Figure 5. It illustrates how a SDK-A fragment can
be refined to an executable SDK-S fragment in an automated
manner. The detector of a TFRM defines a topology template
that can be refined by the specified TFRM. The detector
identifies refinable fragments in a topology template based
on the used node and relationship types. In Figure 5, the
TFRM is applicable if a node template of type QC App is
hostedOn a node template of type IBMQ. The properties are
hereby not part of the detector and, thus, the asterisk is used as
wild card to indicate that arbitrary content can be placed here.

A fragment of a topology template matching a detector can
be replaced with the TFRM’s refinement structure. In Figure 5,
the topology fragment defined in the detector can be refined to
the topology fragment shown on the right side. This includes
the node types, relationship types, configuration properties,
as well as IAs and DAs. Hereby, the refinement structure
corresponds to the topology template shown in Figure 3 on

the left. It enables the deployment of a quantum application
containing a quantum algorithm implemented with Qiskit. In
addition to the structure being refined, it is important that (i)
the refinement structure is inserted correctly into the remaining
topology template and (ii) existing information is not lost. To
ensure that the fragment is inserted correctly and that important
information is preserved, mappings are defined. We distinguish
four mapping types, whereby two are new contributions:

• Relation Mappings [39] specify how ingoing or outgoing
relationship templates of the detected fragment must be
redirected to the refined fragment. The relation mapping in
Figure 5 defines that all connectsTo relationship templates
ingoing at the node template of type QC App must be
redirected to the node template of type Qiskit App.

• Artifact Mappings (new) specify which DA attached to a
node template of the detected fragment is moved to which
node template of the refined fragment. In this example, if
a DA of type Qiskit is attached to the node template of
type QC App, it is moved to the node template of type
Qiskit App in the refined fragment.

• Property Mappings (new) specify which property of a
node template in the detected fragment corresponds to
which property of a refinement structure node template.
Thus, if already specified, the value of the property can be
transferred. In the example, the value of the Port property
of the node template of type QC App is added to the Port
property of the node template of type Qiskit App.

• Stay Mappings [41] define that a node template of the
detected fragment is equivalent to one of the refined
fragment. Thus, this element remains unchanged. In the
example, the node template of type IBMQ is unchanged.

While property and stay mappings refer to elements in the detec-
tor and refinement structure, relation and artifact mappings refer
to elements that are neither in the detector nor the refinement
structure. Thus, if and only if there is an artifact attached to a
node template, or an ingoing or outgoing relationship template,
the artifact or relationship template must match the defined

Algorithm
(Pennylane App)

Port: 8080

IBMQ
(IBMQ)

Token: […]
Backend_Name: […]

Ubuntu
(Ubuntu 18.04)

[…]

P-API

P-Algo

Python
(Pyhton 3.5)

Pennylane
(Pennylane)

[…]

[…]

connectsTo
hostedOn

Relationship types:

Legend:

dependsOn

Figure 6. Exemplary topology template for a Pennylane algorithm on IBMQ.

mapping, otherwise the TFRM is not applicable. Transferred
to the TFRM example, this means that if there is an ingoing
relationship template at the QC App node template that is
not of type connectsTo, the relationship template cannot be
redirected and therefore the TFRM cannot be applied. Similarly,
if an artifact is attached to the QC App node template which
is not of type Qiskit the TFRM is also not applicable. If no
relationship or artifact is used, the mappings are ignored. Thus,
it is ensured that the refined deployment model is deployable.

V. PROTOTYPE

We used the open-source TOSCA-compliant ecosystem
OpenTOSCA [14], [43] to model, refine, and execute the
quantum application deployment models. It consists of the
modeling tool Winery, the deployment engine OpenTOSCA
Container, and the self-service portal Vinothek. Winery provides
capabilities (i) to manage all TOSCA elements, including
service templates, node types, and relationship types, and (ii)
to model topology templates graphically. In order to support
TFRMs, Winery has been extended to enable their creation,
management, as well as their automated application. Only the
two new mappings had to be added to the existing refinement
mappings. To create a new TFRM, the detector and refinement
structure can be modeled graphically as topology templates.
Instead of modeling these topology template fragments from
scratch, an existing topology template can be imported. Thus,
solutions that have been implemented and tested can be directly
reused as refinement structures.

The mappings can be defined based on the elements
contained in the detector and refinement structure (property
and stay mappings) or other elements available in Winery, e. g.,
artifact types and relationship types (relation and artifact map-
ping). The TFRMs are globally available for their application to
corresponding topology templates. Before the topology template
can be packaged and processed by the OpenTOSCA Container,
the refinement process is applied. If there are multiple quantum
applications modeled in the topology template, the refinement
process is repeated until all SDK-A fragments are refined
with suitable executable SDK-S fragments. The prototypical
implementation is publicly available [44].

Algorithm
(Pennylane App)

Port: 8080

Simulator
(Pennylane Simulator)

Device: […]

Ubuntu
(Ubuntu 18.04)

[…]

Python
(Pyhton 3.5)

Pennylane
(Pennylane)

[…]

[…]

connectsTo
hostedOn

Relationship types:

Legend:

dependsOn

P-API

P-Algo

Figure 7. Exemplary topology template for a Pennylane algorithm on the
local Pennylane simulator.

VI. CASE STUDIES

To demonstrate the practical feasibility of the proposed
modeling styles, we implemented three SDK-S deployment
models and the respective three TFRMs. Due to the limited free-
to-use quantum cloud services, only IBMQ has been integrated
to execute quantum algorithms on quantum computers. We
further integrated the Pennylane simulator to demonstrate the
flexibility of the SDK-S modeling style and its generality. We
realized the following three use cases as deployable CSARs: (1)
Qiskit with IBMQ, the running example already explained in
detail in the previous sections with Shor as exemplary algorithm,
(2) Pennylane with IBMQ with an algorithm developed with
Pennylane and executed on IBMQ, depicted in Figure 6, and
(3) Pennylane with simulator with an algorithm developed
with Pennylane and executed on the local Pennylane simulator,
depicted in Figure 7. Since use case (1) is already described in
detail in the previous sections use case (2) and (3) are explained
in detail in the following1.

Pennylane [24] is a vendor-independent SDK to develop and
execute quantum applications and is specifically designed to
work with machine learning libraries and different quantum
cloud services. Running an algorithm on a particular QaaS
also requires the SDK, such as Qiskit, that manages the access.
However, Pennylane can be installed together with all quantum
cloud services or simulators it supports. Thus, depending on
the selected backend, Pennylane will be configured accordingly
during the deployment. In Figure 6 and Figure 7 the two
SDK-S deployment models with Pennylane using IBMQ and
the Pennylane simulator for executing the quantum circuit are
depicted. The node type Pennylane App represents the quantum
application that contains a quantum algorithm implemented
with Pennylane. To compile and execute the quantum algorithm
Pennylane is also required and, thus, the node type Pennylane
is defined and the Algorithm node template is hosted on
Pennylane. As execution environment in Figure 6, IBMQ is
selected, thus, Pennylane connectsTo IBMQ which is reused

1The respective service templates as well as topology fragment refinement
models can be found in the OpenTOSCA TOSCA definitions repository:
https://github.com/OpenTOSCA/tosca-definitions-public

from the Qiskit use case. In Figure 7 the Pennylane simulator
is used as execution environment. Even though it is actually
installed with Pennylane, to enable a flexible and universal
modeling, an execution environment is always modeled as
individual node template. Similar to Qiskit, Pennylane requires
a Python environment to be installed on the hosting machine
for which again an Ubuntu virtual machine is used.

Modeling the same use case as SDK-A deployment model
results in a similar topology template as shown in Figure 3 on
the right. Only the artifact type of the attached DA would be
different. Instead of Qiskit it has to be of type Pennylane.
Because of the different artifact type another refinement
structure is required. Thus, a TFRM with the same detector as
shown in Figure 5, but with a different refinement structure
and different artifact mapping, must be defined to enable
the automated refinement depending on the different artifact
attached to the QC App node template. The CSARs and the
TFRMs for the introduced case studies are available in the
public OpenTOSCA repository [44].

VII. THREADS TO VALIDITY

The SDK-S modeling style demonstrated a high flexibility
and generality: By only exchanging the quantum compute
node, the execution environment for the quantum circuit to
be executed can be changed. Also the integration with non-
quantum applications has been demonstrated, even though
the integration logic is encapsulated in the API DA that
contains the overall invocation, deployment, and execution
logic. To facilitate that the API DA is universal for all quantum
application using a particular SDK, the implementation of
the quantum algorithm must follow a particular programming
model to ensure that in can be called by the API DA. This is
currently not automated, but existing approach as presented by
Zimmermann et al. [45] to generate method stubs based on
defined application interfaces can be integrated.

VIII. RELATED WORK

So far, there are still few works dealing with the auto-
mated deployment and orchestration of quantum applications.
Sim et al. [46] presented the algo2qpu framework that supports
the selection of quantum algorithms, their compilation, and
execution on a quantum cloud service. They focus on supporting
the development process of quantum algorithm rather then
the integration with non-quantum applications. We also use
existing technologies for deployment automation and focus
on the best possible support of different stakeholders by
provided different modeling concepts with TOSCA4QC. Zapata
Computing who was also involved in the development of
algo2qpu, provides Orquestra, a workflow-like approach for
the design and execution of quantum algorithms [47]. This is
an imperative modeling approach, i.e., the individual tasks to
achieve the defined goal have to be specified. In contrast, we
provide a declarative approach, i.e., the desired state is defined
by a topology template and the required tasks to achieve this
state are derived by the orchestration engine.

Dreher and Ramasami [48] demonstrated how Qiskit can
be packaged as Docker container for executing an algorithm
on IBMQ. Such artifacts can be used by our approach as
deployment artifact for the Qiskit container. Depending on
whether Qiskit is running on a VM or in a Docker environment
a respective DA can be selected. This is one advantage of
TOSCA that any type of artifact can be packaged and processed.
Other technologies, e.g. jupyter notebooks are also often use
to enable the development and direct execution of quantum
algorithms [49]. From a TOSCA perspective, such jupyter
notebooks are deployment artifacts as well.

There are several model transformation approaches [50] and
especially for TOSCA several approaches to reduce model
complexity by substituting node types with complete topology
templates exist [7]. However, since not only a node type is
substituted but also the general structure has to be changed
in our approach, i. e., the hostedOn relation to the quantum
compute node type is changed to a connectsTo relation, a more
advanced TOSCA refinement process had to be applied. Thus,
we selected the pattern-based refinement approach introduced
in previous works [39]–[41] and extended the mapping features.
The advanced refinement approach is not limited to quantum
applications and can also be used in general topology or pattern-
based refinement processes [40].

IX. CONCLUSION AND FUTURE WORK

In this paper we presented TOSCA4QC that introduces
two deployment modeling styles to automate the deployment
and orchestration of quantum applications: (i) the SDK-
specific (SDK-S) style, which covers all technical details
of a quantum application development, and (ii) the SDK-
agnostic (SDK-A) style, which follows the common modeling
approach of classical applications, but hides technical details
and is therefore not executable. To make it executable it first
has to be transformed into a SDK-S model. For this, we
introduced a topology refinement approach that enables the
transformation of SDK-A models to SDK-S models in an
automated manner. We demonstrated with three use cases that
the SDK-S modeling style provides the required flexibility
and generality for different SDKs and quantum compute
resources. Thus, the deployment of a quantum application
can be represented either as an executable model, for which
no transformation is required, but which is complex, or as a
model that follows known modeling approaches, but which does
not follow the deployment principles and therefore has to be
transformed before it can be executed. As soon as it is possible
to host and invoke a quantum circuit on a quantum service the
deployment principles hold for both modeling styles.

As we have concentrated on vertical integration in this work,
we will continue to focus on the horizontal integration of
quantum and non-quantum applications in the future to improve
the orchestration capabilities of quantum applications. Also the
selection of a quantum cloud service for the execution of a
particular quantum algorithm will be further investigated.

ACKNOWLEDGMENT

The authors would like to thank Felix Burk and Leon Kiefer
for there valuable input. The work was partially founded
by the DFG projects SustainLife (379522012) and ReSUS
(425911815) and the BMWi project PlanQK (01MK20005N).

REFERENCES

[1] E. National Academies of Sciences, Medicine et al., Quantum computing:
progress and prospects. National Academies Press, 2019.

[2] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[3] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” vol. 574, pp. 505–510, 2019.

[4] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Addison-
Wesley, Jul. 2010.

[5] M. Wurster et al., “The Essential Deployment Metamodel: A Systematic
Review of Deployment Automation Technologies,” SICS Software-
Intensive Cyber-Physical Systems, Aug. 2019.

[6] C. Endres et al., “Declarative vs. Imperative: Two Modeling Patterns
for the Automated Deployment of Applications,” in Proceedings of the
9th International Conference on Pervasive Patterns and Applications
(PATTERNS). Xpert Publishing Services, Feb. 2017, pp. 22–27.

[7] J. Bellendorf and Z. Á. Mann, “Specification of cloud topologies and
orchestration using tosca: a survey,” 2019.

[8] A. C. Franco da Silva et al., “Internet of Things Out of the Box:
Using TOSCA for Automating the Deployment of IoT Environments,”
in Proceedings of the 7th International Conference on Cloud Computing
and Services Science (CLOSER). SciTePress Digital Library, Jun. 2017,
pp. 358–367.

[9] F. Li, M. Vögler, M. Claeßens, and S. Dustdar, “Towards automated iot
application deployment by a cloud-based approach,” in 6th International
Conference on Service-Oriented Computing and Applications (SOCA),
Dec. 2013, pp. 61–68.

[10] A. C. F. da Silva et al., “OpenTOSCA for IoT: Automating the
Deployment of IoT Applications based on the Mosquitto Message Broker,”
in Proceedings of the 6th International Conference on the Internet of
Things (IoT). ACM, Nov. 2016, Demonstration, pp. 181–182.

[11] V. Antonenko et al., “C2: General purpose cloud platform with nfv life-
cycle management,” in 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), 2017, pp. 353–356.

[12] M. S. de Brito et al., “A service orchestration architecture for fog-enabled
infrastructures,” in 2017 Second International Conference on Fog and
Mobile Edge Computing (FMEC), 2017, pp. 127–132.

[13] B. Selic, “The pragmatics of model-driven development,” IEEE Software,
vol. 20, no. 5, pp. 19–25, 2003.

[14] U. Breitenbücher et al., “The OpenTOSCA Ecosystem - Concepts &
Tools,” European Space project on Smart Systems, Big Data, Future
Internet, pp. 112–130, Dec. 2016.

[15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, 10th ed. USA: Cambridge University Press, 2011.

[16] E. Rieffel and W. Polak, Quantum Computing: A Gentle Introduction,
1st ed. The MIT Press, 2011.

[17] R. LaRose, “Overview and Comparison of Gate Level Quantum Software
Platforms,” Quantum, vol. 3, p. 130, 2019.

[18] H. J. Briegel et al., “Measurement-based quantum computation,” Nature
Physics, vol. 5, no. 1, pp. 19–26, 2009.

[19] D. Aharonov et al., “Adiabatic Quantum Computation Is Equivalent
to Standard Quantum Computation,” SIAM review, vol. 50, no. 4, pp.
755–787, 2008.

[20] Microsoft. (2020) Quantum development kit. [Online]. Available:
https://www.microsoft.com/en-us/quantum/development-kit

[21] IBM. (2020) Qiskit. [Online]. Available: https://qiskit.org/
[22] Rigetti. (2020) Docs for the forest sdk. [Online]. Available:

http://docs.rigetti.com/en/stable/
[23] A. McCaskey. (2019) Xacc. [Online]. Available: http://xacc.readthedocs.io
[24] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, C. Blank, K. McKiernan,

and N. Killoran, “Pennylane: Automatic differentiation of hybrid quantum-
classical computations,” arXiv preprint arXiv:1811.04968, 2018.

[25] Amazon. (2020) Aws braket. [Online]. Available: https://aws.amazon.
com/braket

[26] D. Weerasiri et al., “A Taxonomy and Survey of Cloud Resource
Orchestration Techniques,” ACM Computer Surveys, vol. 50, no. 2, 2017.

[27] U. Breitenbücher et al., “Combining Declarative and Imperative Cloud
Application Provisioning based on TOSCA,” in International Conference
on Cloud Engineering (IC2E 2014). IEEE, Mar. 2014, pp. 87–96.

[28] ——, “Vino4TOSCA: A Visual Notation for Application Topologies
based on TOSCA,” in On the Move to Meaningful Internet Systems:
OTM 2012 (CoopIS 2012). Springer, Sep. 2012, pp. 416–424.

[29] F. Leymann and J. Barzen, “The bitter truth about quantum algorithms
in the nisq era,” arXiv preprint arXiv:2006.02856, 2020.

[30] M. Salm et al., “A Roadmap for Automating the Selection of Quantum
Computers for Quantum Algorithms,” Communications in Computer and
Information Science (CCIS), p. to appear, 2020.

[31] OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0, Organization for the Advancement of Structured
Information Standards (OASIS), 2013.

[32] ——, TOSCA Simple Profile in YAML Version 1.0, Organization for the
Advancement of Structured Information Standards (OASIS), 2015.

[33] T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-based Cloud
Applications,” in Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC 2013). Springer, Dec. 2013,
Demonstration, pp. 692–695.

[34] A. Bergmayr et al., “A Systematic Review of Cloud Modeling Languages,”
ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–38, Feb. 2018.

[35] F. Leymann et al., “Quantum in the Cloud: Application Potentials
and Research Opportunities,” in Proceedings of the 10th International
Conference on Cloud Computing and Services Science (CLOSER).
SciTePress, 2020, pp. 9–24.

[36] F. Leymann, J. Barzen, and M. Falkenthal, “Towards a Platform for
Sharing Quantum Software,” in Proceedings of the 13th Advanced Summer
School on Service Oriented Computing (2019), ser. IBM Technical Report
(RC25685). IBM Research Division, Sep. 2019, pp. 70–74.

[37] C. Linnhoff-Popien, “PlanQK — Quantum Computing Meets Artificial
Intelligence,” Digitale Welt, vol. 4, pp. 28–35, 2020.

[38] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer,” SIAM Journal on
Computing, vol. 26, no. 5, p. 1484–1509, 1997.

[39] L. Harzenetter et al., “Pattern-based Deployment Models and Their
Automatic Execution,” in 11th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC). IEEE Computer Society, 2018,
pp. 41–52.

[40] J. Guth and F. Leymann, “Pattern-based rewrite and refinement of
architectures using graph theory,” Software-Intensive Cyber-Physical
Systems (SICS), pp. 1–12, Aug. 2019.

[41] L. Harzenetter et al., “Pattern-based Deployment Models Revisited:
Automated Pattern-driven Deployment Configuration,” in Proccedings
of the Twelfth International Conference on Pervasive Patterns and
Applications (PATTERNS). Xpert Publishing Services, TO APPEAR.

[42] H. Eberle, T. Unger, and F. Leymann, “Process Fragments,” in On the
Move to Meaningful Internet Systems: OTM 2009. Springer, 2009, pp.
398–405.

[43] University of Stuttgart. (2019) OpenTOSCA Research Prototype.
[Online]. Available: https://www.opentosca.org/

[44] ——. (2020) OpenTOSCA Source Code. [Online]. Available:
https://github.com/OpenTOSCA

[45] M. Zimmermann, U. Breitenbücher, and F. Leymann, “A TOSCA-
based Programming Model for Interacting Components of Automatically
Deployed Cloud and IoT Applications,” in Proceedings of the 19th

International Conference on Enterprise Information Systems (ICEIS
2017). SciTePress, Apr. 2017, pp. 121–131.

[46] S. Sim et al., “A framework for algorithm deployment on cloud-based
quantum computers,” arXiv preprint arXiv:1810.10576, 2018.

[47] Zapata. (2020) Orquestra the unified quantum operating environment.
[Online]. Available: https://www.zapatacomputing.com/orquestra/

[48] P. Dreher and M. Ramasami, “Prototype container-based platform for
extreme quantum computing algorithm development,” in 2019 IEEE High
Performance Extreme Computing Conference (HPEC), 2019, pp. 1–7.

[49] Qiskit. (2020) Qiskit tutorial. [Online]. Available: https://github.com/
Qiskit/qiskit-tutorials

[50] M. Biehl, “Literature Study on Model Transformations,” Royal Institute
of Technology, Tech. Rep., Jul. 2010.

https://www.microsoft.com/en-us/quantum/development-kit
https://qiskit.org/
http://docs.rigetti.com/en/stable/
http://xacc.readthedocs.io
https://aws.amazon.com/braket
https://aws.amazon.com/braket
https://www.opentosca.org/
https://github.com/OpenTOSCA
https://www.zapatacomputing.com/orquestra/
https://github.com/Qiskit/qiskit-tutorials
https://github.com/Qiskit/qiskit-tutorials

