
Advanced Information Systems Engineering, CAiSE Forum 2020, Grenoble, France, June
8–12, 2020, Proceedings, pp. 138–145, 2020. © 2020 Springer-Verlag. This is the author’s
version of the work. It is posted by permission of Springer-Verlag for your personal use.
The final publication is available at Springer via https://doi.org/10.1007/978-3-030-
58135-0_12.

TOSCA Lightning: An Integrated

Toolchain for Transforming TOSCA Light into

Production-Ready Deployment Technologies

Michael Wurster1, Uwe Breitenbücher1, Lukas Harzenetter1,

Frank Leymann1, and Jacopo Soldani2

1 Institute of Architecture of Application Systems, University of Stuttgart, Germany

[lastname]@iaas.uni-stuttgart.de
2 Department of Computer Science, University of Pisa, Pisa, Italy

[lastname]@di.unipi.it

Abstract. The OASIS standard TOSCA provides a portable means for

specifying multi-service applications and automating their deployment.

Despite TOSCA is widely used in research, it is currently not supported

by the production-ready deployment technologies daily used by practi-

tioners, hence resulting in a gap between the state-of-the-art in research

and the state-of-practice in industry. To help bridging this gap, we iden-

tified TOSCA Light, a subset of TOSCA enabling the transformation

of compliant deployment models to the vast majority of deployment

technology-specific models used by practitioners nowadays. In this paper,

we demonstrate TOSCA Lightning by two contributions. We (i) present

an integrated toolchain for specifying multi-service applications with

TOSCA Light and transforming them into different production-ready

deployment technologies. Additionally, we (ii) demonstrate the toolchain’s

effectiveness based on a third-party application and Kubernetes.

Keywords: Deployment Automation, Cloud Computing, TOSCA, Kubernetes

1 Introduction

Automating the deployment of multi-service applications is crucial, as manually

deploying them is time-consuming and error-prone, and since modern software

engineering practices (e. g., continuous development and continuous integration)

heavily rely on deployment automation [19]. To accomplish this need, various

deployment automation technologies have been proposed. Each technology is

however typically equipped with its own language for specifying the target deploy-

ment for a multi-service application. Such languages either declaratively describe

the desired application configuration or imperatively list the technical tasks to

be executed to deploy and configure the application [10]. Even if declarative

languages are by far considered to be the most appropriate in practice [19], they

are tightly coupled to the corresponding deployment technology, hence limiting

the portability of application deployments from one technology to another.

https://doi.org/10.1007/978-3-030-58135-0_12
https://doi.org/10.1007/978-3-030-58135-0_12
https://doi.org/10.1007/978-3-030-58135-0_12

TOSCA Lightning 139

In contrast, the Topology and Orchestration Specification for Cloud Applica-
tions [16] (TOSCA) is a standardized modeling language allowing to declaratively

specify portable multi-service application deployments. While it is heavily used

in research [1], TOSCA is currently not supported by the production-ready de-

ployment technologies daily used by practitioners. As a result, a gap between the

academic state-of-the-art and the industrial state-of-practice is arising.

To help bridging this gap, we identified the TOSCA Light [20] subset of

TOSCA, which can be automatically transformed to the vast majority of deploy-

ment technology-specific languages. TOSCA Light identifies the subset of TOSCA

that complies with the Essential Deployment Metamodel (EDMM), a set of core

deployment modeling entities that the 13 most used deployment technologies

understand [19]. Any deployment modeling language relying on the entities of

EDMM can hence be converted to multiple heterogeneous technology-specific

deployment artifacts [18]. TOSCA Light is exactly that subset of the TOSCA

specification that complies with EDMM and, thus, multi-service application de-

ployments written in TOSCA Light can be processed to obtain technology-specific

deployment models, including required artifacts and templates [20].

Our objective in this paper is to demonstrate the potentials and practical

applicability of this approach by introducing the TOSCA Lightning toolchain

and to show how TOSCA Light favors the portability of multi-service application

deployments. We show that TOSCA Light enhances the portability of deployment

models as it can be used for devising technology-agnostic specifications that can

be translated to different technology-specific deployment artifacts. With TOSCA

Light, application developers can indeed specify their application deployment

only once, still being able to actually deploy the specified application on multiple

production-ready deployment technologies such as Kubernetes or Terraform.

In this perspective, the contribution of this demonstrator paper is twofold. We

first present (i) the open-source TOSCA Lightning integrated toolchain. TOSCA

Lightning enables specifying multi-service applications in TOSCA validating

their compliance with TOSCA Light and generating the technology-specific

artifacts for actually enacting their deployment on production-ready deployment

technologies. Moreover, we present (ii) an end-to-end case study based on a

third-party application. The case study illustrates how to exploit the TOSCA

Lightning toolchain to validly specify the application with TOSCA Light and to

automatically generate the artifacts for actually deploying the application with

one of the supported production-ready technologies, e. g., Kubernetes.

In the following, Sect. 2 presents the integrated TOSCA Lightning toolchain

and Sect. 3 shows its application to a concrete case study. Section 4 and Sect. 5

discuss related work and draw some concluding remarks, respectively.

2 The TOSCA Lightning Toolchain

We hereby introduce all components forming the integrated TOSCA Lightning
toolchain and explain the user’s workflow. The toolchain consists of four compo-

nents in total, as depicted in Fig. 1. Two of them were newly developed within the

140 Wurster et al.

Modeling Tool Eclipse Winery

TOSCA
Importer

TOSCA Light
Validator

EDMM
Exporter

EDMM Transformation Framework

EDMM
Importer

Terraform

Kubernetes
…

T

T

…
EDMM

TOSCA Lightning API

TOSCA Lightning User Interface

Transform into Deployment
Technology-specific Model

3
Import, Create, or Edit
TOSCA Model

1 Validate Model Regarding
TOSCA Light Compliance

2

Fig. 1: The TOSCA Lightning Toolchain (new integration components colored green).

scope of this paper, namely the TOSCA Lightning User Interface and the TOSCA
Lightning API. Further, two existing components, namely Eclipse Winery [15] and

the EDMM Transformation Framework [18], were integrated into the proposed

toolchain by utilizing their corresponding APIs. The TOSCA Lightning toolchain

is open source and available on GitHub3, including a demonstration video.

In the scope of this paper, we developed the TOSCA Lightning User Interface

and the TOSCA Lightning API to fully integrate the TOSCA modeling tool

Eclipse Winery and the EDMM Transformation Framework to enable transfor-

mation. The TOSCA Lightning User Interface is the user’s main entry point and

acts as a dashboard to list, create, change, or transform compliant TOSCA Light

models. The TOSCA Lightning API respectively encapsulates the REST APIs

over HTTP of Eclipse Winery and the EDMM Transformation Framework to

provide a uniform interface for the integrated TOSCA Lightning toolchain.

The TOSCA Lightning User Interface is able to launch the modeling environ-

ment Eclipse Winery [15] to import, create, or edit TOSCA Light models. Eclipse

Winery is a web-based environment to graphically model TOSCA-based appli-

cation topologies and provides a Management Interface to manage all TOSCA

related entities, such as node types, their property definitions, operations, and

artifacts. Further, it provides a Topology Modeler component which enables the

graphical composition of an application and its desired target state. Winery has

been extended by various features, which can be enabled by so-called feature flags,
to provide the necessary TOSCA Light capabilities, e. g., to validate whether

imported or created TOSCA models are compliant with TOSCA Light.

3 https://github.com/UST-EDMM/tosca-lightning

https://github.com/UST-EDMM/tosca-lightning

TOSCA Lightning 141

The TOSCA Lightning User Interface enables users to execute the transforma-

tion of a TOSCA Light model into a deployment technology-specific model (DTSM)

by selecting one of the supported deployment technologies. For this transfor-

mation, the user interface invokes via the TOSCA Lightning API the Eclipse

Winery API to export the selected TOSCA Light model as EDMM model, which

can be processed afterward by the EDMM Transformation Framework [18]. Ex-

porting TOSCA Light models as EDMM models is possible since TOSCA Light

can be directly mapped to EDMM [19, 20]. Thus, the EDMM Transformation

Framework enables transforming a given EDMM model into required artifacts,

i. e., files and models, to execute the deployment using the selected deployment

technology’s tooling. The EDMM Transformation Framework is plugin-based and,

at the time of writing, supports via the EDMM Transformation Framework the

transformation into DTSMs of 13 deployment automation technologies, such as

Kubernetes, Terraform, Chef, Puppet, and AWS CloudFormation. We hereafter

illustrate how users work with the TOSCA Lightning toolchain:

Import, Create, or Edit TOSCA Model. Eclipse Winery provides the

TOSCA Importer functionality to easily reuse and adapt existing TOSCA deploy-

ment models. Users can create new models or edit existing models by graphically

composing the component structure of the desired application. The application’s

component structure is indeed described declaratively using TOSCA modeling

constructs. The resulting model comprises all TOSCA-based definitions and

entities describing types, component instances, their properties, operations, and

file artifacts required for deploying and operating the application.

Validate Model Regarding TOSCA Light Compliance. The validation of

the TOSCA model is performed at design time using the TOSCA Light Validator
component of Eclipse Winery. It checks the TOSCA Light compliance of imported

or created TOSCA deployment models. The models are checked against a set of

TOSCA Light modeling requirements [20]. In case the model is compliant with

TOSCA Light, it is shown in the TOSCA Lightning User Interface. In situations

where the model is not compatible with TOSCA Light, the model can be refined

according to the provided modification recommendations, presented to the user

as a list of violated conditions inside Eclipse Winery.

Transform into DTSM. TOSCA Lightning is able to transform a validated

TOSCA Light model into a DTSM by integrating Eclipse Winery and the EDMM

Transformation Framework. The model exchange between Eclipse Winery and

EDMM Transformation Framework is realized by file transfer, as depicted in Fig. 1.

Eclipse Winery’s EDMM Exporter component produces the output according to

the input file specifications of the EDMM Transformation Framework. Thus, the

output can be directly used for transforming the model into the desired target

deployment model format. Notably, the possibility to transform the model is

guaranteed by design since the used modeling constructs conform to the essential

entities defined by EDMM and, thus, are compliant with TOSCA Light. Users

simply select one of the 13 supported deployment automation technologies (e.g.,

Kubernetes) for the TOSCA Light model that should be transformed. Afterward,

users can download the transformation result containing the respective files and

142 Wurster et al.

Pet Clinic
(Web App)

Java WAR

Database
(MySQL DB)

Schema: petclinic
User: pc
Password: pc

App Runtime
(Tomcat)

Port: 8080

DBMS
(MySQL DBMS)

Port: 3306
RootPassword: pc

HostedOnConnectsTo

VM
(Ubuntu)

VM
(Ubuntu)

Fig. 2: Case Study: Transforming TOSCA Light to Kubernetes.

templates generated by the EDMM Transformation Framework. At this stage,

the generated target deployment model is ready to be deployed using the target

technology’s tooling. Hence, the actual deployment happens using the actual

tools and mechanisms provided by the target deployment automation technology.

3 Case Study: Transforming TOSCA Light to Kubernetes

Today, Kubernetes is one of the fastest-growing open-source projects. Gartner

predicts that by 2022, more than 75% of global enterprises will be using con-

tainerized applications in production, and Kubernetes will play an important

role [8]. Therefore, we want to show how a declaratively modeled TOSCA Light

application can be deployed to Kubernetes by generating the required files and

template to execute the deployment on a running Kubernetes cluster.

For the sake of demonstration, we prepared a TOSCA deployment model

of the Spring PetClinic application that demonstrates the use of the Spring

framework (fork of Java’s Pet Store application), which represents a simple

software for a veterinary clinic. It is a well-known demo web application running

on a Tomcat web server while connecting to a MySQL database to store its data.

The respective TOSCA model is schematically depicted on the left-hand side in

Fig. 2. For reasons of space limitations, we hereby only show the deployment of

the depicted PetClinic application to Kubernetes. However, its deployment can

be achieved with any of the other 12 deployment automation technologies or any

other TOSCA deployment model supported by the TOSCA Lightning toolchain.

The application model is created or imported using Eclipse Winery. The

model itself is not specifically composed for Kubernetes as the target runtime

environment. Instead, it is modeled in a generic, component-based manner

that will be later translated into the respective files and templates required by

Kubernetes, e. g., Dockerfiles, Kubernets Deployment, and Kubernetes Service

descriptors. The TOSCA Lightning User Interface lists all available TOSCA

Light compliant service templates after it has been started with Docker4.

4 A Docker Compose file to start the TOSCA Lightning toolchain, a demonstration

video, an in-depth quickstart guide, and ready-to-use TOSCA models are available

in our GitHub repository: https://ust-edmm.github.io/tosca-lightning

https://ust-edmm.github.io/tosca-lightning

TOSCA Lightning 143

Users can open the Topology Editor to display the application’s component

structure. Further, the Topology Editor is used to set property values which will be

used as configuration for instantiating the components at runtime. Eclipse Winery

in our demonstration scenario already comes with a set of built-in modeling

types, which can be used to model new applications. However, these types follow

the proposed normative types by the TOSCA Simple Profile standard [16], while

new types can be imported or added manually using Eclipse Winery.

The TOSCA Lightning User Interface and its way to select a transformation

target for a certain model is depicted on the right-hand side in Fig. 2. Users can

transform the PetClinic application to Kubernetes by selecting the respective

entry in the pop-up dialog. The Kubernetes plugin of the EDMM Transformation

Framework tries to identify component stacks, a set of tightly coupled components,

i. e., components related with “HostedOn” relations. Further, the plugin produces

a Dockerfile as well as a Kubernetes Deployment and Kubernetes Service for

each component stack. Once the transformation has been performed, users can

download the transformation result. From here, users can now use the technology’s

native tooling, i. e., use Docker and its tooling to build the Docker images based

on the translated Dockerfiles and the kubectl command-line tool to “apply” the

produced Kubernetes descriptor files to a cluster. An in-depth step by step guide

as well as a video5 demonstrating the execution of the Kubernetes deployment is

available online and part of our GitHub repository.

4 Related Work

The closest approach to ours is that by Brabra et al. [2], which exploits model-

to-model and model-to-text transformations to obtain artifacts for deploying a

TOSCA application with four production-ready deployment technologies. Simi-

larly to our approach, Brabra et al. [2] identifies a subset of TOSCA that can be

processed by restricting inter-component relationships to horizontal dependen-

cies (indicating that a component connects to/depends on another), in order to

generate the deployment artifacts for Docker, Juju, Kubernetes, or Terraform.

Our solution can deal with a wider set of application topologies, as it also in-

cludes vertical dependencies (indicating that a component is installed/hosted on

another), and it already targets nine more deployment technologies in addition

to those targeted by Brabra et al. [2].

Other approaches are aiming at enacting the deployment of TOSCA ap-

plications, which can be clustered in three main categories [1]. We can indeed

distinguish (i) solutions for directly deploying TOSCA applications, (ii) approaches

integrating TOSCA with other standards for enhancing deployment automation,

and (iii) solutions for deploying TOSCA applications on existing deployment tech-
nologies. The reference approach for (i) is the OpenTOSCA engine proposed by

Breitenbücher et al. [3]. OpenTOSCA enables directly deploying TOSCA appli-

cations on a target infrastructure, by requiring to get installed on a management

5 https://github.com/UST-EDMM/tosca-lightning#video

https://github.com/UST-EDMM/tosca-lightning#video

144 Wurster et al.

node. OpenTOSCA is intended to be itself the orchestrator of the application,

and it currently does not support streamlining the deployment of an application

to other existing deployment technologies. Similar considerations apply to all

other existing approaches for directly deploying TOSCA applications on target

infrastructures [9]. All those approaches rely on the availability of full-fledged

TOSCA-compliant orchestrators. In contrast, our objective is to enable deploying

TOSCA applications by means of production-ready deployment technologies.

Efforts integrating TOSCA with other standards, i. e., concerning (ii), have

been published by Calcaterra et al. [6] and Kopp et al. [14]. Both approaches

integrate TOSCA with BPMN to imperatively program the deployment of multi-

service applications. Additionally, Glaser et al. [11] proposes a cloud application

orchestrator based on the integration of TOSCA with OCCI. However, despite the

fact that the presented approaches enhance deployment automation by integrating

TOSCA with existing standards, they still rely on the installation of some ad-hoc

engine for processing the proposed solution.

Lastly, there are the solutions enabling the deployment of TOSCA applications

on existing cloud deployment technologies. For instance, Breiter et al. [4] illustrate

how to deploy TOSCA applications on the IBM cloud computing infrastructure.

Brogi et al. [5] propose the TosKer engine for deploying and managing TOSCA

applications on Docker-enabled infrastructures. Carrasco et al. [7] enable trans-

cloud application deployment by allowing to run TOSCA application specifications

on top of Apache Brooklyn. Additionally, Gusev et al. [12], Katsaros et al. [13] and

Tricomi et al. [17] propose different approaches for deploying TOSCA applications

on OpenStack cloud infrastructures. However, all these efforts target a precise

cloud deployment technology. In contrast, our approach uses transformation

and enables the deployment of TOSCA applications using the 13 most used

production-ready deployment technologies, such as Terraform, Chef, or Puppet.

5 Conclusions

In this paper, we presented the open-source TOSCA Lightning toolchain, which

enables the specification of multi-service applications in TOSCA, validating their

compliance with TOSCA Light, and generating artifacts for enacting their de-

ployment on 13 production-ready deployment technologies. We also presented an

end-to-end case study illustrating how to exploit the TOSCA Lightning toolchain

to specify the deployment of a third-party application and to automatically

obtain the artifacts for effectively running the application with Kubernetes.

We plan to further evaluate TOSCA Light and the TOSCA Lightning toolchain

in practice, by applying them to real-world industrial case studies. Further, as

immediate future work, we plan to extend the TOSCA Lightning toolchain by a

Deployment Technology Integration Framework. Based on the TOSCA Lightning

transformation result, the goal is to directly trigger the automated deployment

by unifying and encapsulating respective deployment technology APIs.

Acknowledgments. Work partially funded by projects RADON (EU, 825040),

SustainLife (DFG, 379522012), and DECLware (Univ. of Pisa, PRA_2018_66).

TOSCA Lightning 145

References

1. Bellendorf, J., Mann, Z.A.: Specification of cloud topologies and orchestration using

TOSCA: A survey. Computing (2019)
2. Brabra, H., Mtibaa, A., Gaaloul, W., Benatallah, B., Gargouri, F.: Model-Driven

Orchestration for Cloud Resources. In: 2019 IEEE Int. Conf. on Cloud Computing

(CLOUD). pp. 422–429 (2019)
3. Breitenbücher, U., et al.: The OpenTOSCA Ecosystem – Concepts & Tools. European

Space project on Smart Systems, Big Data, Future Internet - Towards Serving the

Grand Societal Challenges – Volume 1: EPS Rome 2016 (2016)
4. Breiter, G., et al.: Software defined environments based on TOSCA in IBM cloud

implementations. IBM Journal of Research and Development 58(2/3), 9:1–9:10 (2014)
5. Brogi, A., Rinaldi, L., Soldani, J.: TosKer: A Synergy Between TOSCA and Docker

for Orchestrating Multicomponent Applications. Software: Practice and Experience

48(11), 2061–2079 (2018)
6. Calcaterra, D., Cartelli, V., Di Modica, G., Tomarchio, O.: A Framework for the

Orchestration and Provision of Cloud Services Based on TOSCA and BPMN. In:

Cloud Computing and Service Science. CCIS, vol. 864, pp. 262–285. Springer (2018)
7. Carrasco, J., Durán, F., Pimentel, E.: Trans-cloud: CAMP/TOSCA-based bidimen-

sional cross-cloud. Computer Standards & Interfaces 58, 167 – 179 (2018)
8. Chandrasekaran, A.: Gartner Report: Best Practices for Running Containers and

Kubernetes in Production (2019)
9. Cloudify: TOSCA Orchestration & Training. https://cloudify.co/tosca (2020)

10. Endres, C., et al.: Declarative vs. Imperative: Two Modeling Patterns for the

Automated Deployment of Applications. In: Proc. of the 9th Int. Conf. on Pervasive

Patterns and Applications. pp. 22–27. Xpert Publishing Services (2017)
11. Glaser, F., Erbel, J., Grabowski, J.: Model Driven Cloud Orchestration by Combining

TOSCA and OCCI. In: Proc. of the 7th Int. Conf. on Cloud Computing and Services

Science - Volume 1: CLOSER,. pp. 672–678. SciTePress (2017)
12. Gusev, M., Kostoska, M., Ristov, S.: Cloud P-TOSCA porting of N-tier applications.

In: 2014 22nd Telecommunications Forum Telfor (TELFOR). pp. 935–938 (2014)
13. Katsaros, G., et al.: Cloud Application Portability with TOSCA, Chef and Openstack.

In: 2014 IEEE Int. Conf. on Cloud Engineering. pp. 295–302 (2014)
14. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A Domain-

Specific Language to Model Management Plans for Composite Applications. In:

Business Process Model and Notation. pp. 38–52. Springer Berlin Heidelberg (2012)
15. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool for

tosca-based cloud applications. In: Int. Conf. on Service-Oriented Computing. pp.

700–704. Springer (2013)
16. OASIS: TOSCA Simple Profile in YAML Version 1.3 (2019)
17. Tricomi, G., et al.: Orchestrated Multi-Cloud Application Deployment in OpenStack

with TOSCA. In: 2017 IEEE Int. Conf. on Smart Computing. pp. 1–6 (2017)
18. Wurster, M., et al.: The EDMM Modeling and Transformation System. In: Service-

Oriented Computing – ICSOC 2019 Workshops. pp. 294–298. Springer (2019)
19. Wurster, M., et al.: The Essential Deployment Metamodel: A Systematic Review of

Deployment Automation Technologies. SICS Software-Intensive Cyber-Physical

Systems (2019)
20. Wurster, M., et al.: TOSCA Light: Bridging the Gap Between the TOSCA Specification

and Production-Ready Deployment Technologies. In: Proceedings of the 10th

International Conference on Cloud Computing and Services Science (CLOSER 2020).

pp. 216–226. SciTePress (2020)

https://cloudify.co/tosca

	TOSCA Lightning: An Integrated Toolchain for Transforming TOSCA Light into Production-Ready Deployment Technologies
	1 Introduction
	2 The TOSCA Lightning Toolchain
	3 Case Study: Transforming TOSCA Light to Kubernetes
	4 Related Work
	5 Conclusions

