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Abstract: The adoption of cloud computing combined with DevOps enables companies to react to new market require-
ments more rapidly and fosters the use of automation technologies. This influences the way software solutions
are built, which is why the concept of cloud-native applications has emerged over the last few years to build
highly scalable applications, and to automatically deploy and run them in modern cloud environments. How-
ever, there is currently no reference work clearly stating the features that a deployment technology must offer to
support the deployment of arbitrary cloud-native applications. In this paper, we derive three essential features
for deployment technologies based on the current cloud-native research and characteristics discussed therein.
The presented features can be used to compare and categorize existing deployment technologies, and they are
intended to constitute a first step towards a comprehensive framework to assess deployment technologies.

1 INTRODUCTION

The wide adoption of cloud computing resulted in a
change in how software solutions are developed and
deployed. Market demands push software companies
to adopt new practices to increase the ability of releas-
ing more often, even immediately if required (Humble
and Farley, 2010). To support this, DevOps emerged
as a widespread concept to establish a high level
of automation for accomplishing and managing soft-
ware releases in shorter cycles. For rapid deploy-
ment cycles, the application components themselves
need to feature certain characteristics, which resulted
in the notion of cloud-native applications (Kratzke
and Quint, 2017). The latter was introduced as an
architectural approach to allow developing, deploy-
ing and running software solutions and their compo-
nents. The motivation for this was to deliver software
solutions more consistently, in an automated manner,
while at the same time enabling horizontal scaling and
integrating diverse technologies, different clouds, and
legacy systems (Stine, 2015).

Several publications, authored by researchers
from both academy and industry, define what a cloud-
native application is, also in terms of the charac-
teristics that it must feature for being considered
such (Janssen, 2018; Fehling et al., 2014; Stine, 2015;
Pahl et al., 2019; Vettor and Smith, 2019). At the
same time, for ensuring a highly-automated deploy-

ment and configuration management, it is also cru-
cial that the deployment technology itself offers sup-
port for processing cloud-native applications and their
components. However, there is currently no reference
work listing the features that a deployment technol-
ogy should offer to support the deployment of arbi-
trary cloud-native applications, i. e., to feature what
we shall call cloud-native deploy-ability.

In this paper, we make a first step in this direction.
We indeed derive three essential features for deploy-
ment technologies based on the current cloud-native
research and on the cloud-native application-centric
attributes discussed therein. To do so, we first dis-
till the main characteristics of cloud-native applica-
tions, as per their current perception in both white and
gray reference literature. Due to the influence of mi-
croservices and their implementation based on con-
tainers, it matters that deployment technologies sup-
port emerging and de facto standard packaging for-
mats and cloud service offerings. This means to sup-
port (natively, or via extensions) all possible cloud
service models (e. g., FaaS or SaaS) on top of tradi-
tional IaaS offerings (Leymann et al., 2017) and to
provide the opportunity to target different cloud de-
ployment models, such a public, private, or hybrid
clouds (Kratzke and Quint, 2017). Further, it emerges
that reusable deployment models are needed to estab-
lish a repeatable end-to-end deployment automation
and to specify the deployment of arbitrary applica-
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tion components, their relations and desired config-
uration in a declarative manner, which is perceived
as the most appropriate approach in practice (Wurster
et al., 2019b; Herry et al., 2011).

It is finally also worth stressing that this paper
aims at performing a first step towards classifying and
assessing the support for deploying cloud-native ap-
plications provided by existing deployment technolo-
gies. Indeed, even if the presented features and char-
acteristics in terms of supporting the deployment of
cloud-native applications can already be used to com-
pare existing deployment technologies, they are in-
tended to set the basis for further research. We plan
to expand and build on top of them, with the ultimate
goal of providing a comprehensive framework to as-
sess existing deployment technologies.

The rest of the paper is as follows. Sect. 2 distills
currently recognized characteristics of cloud-native
apps, which are taken in Sect. 3 to determine their
influence on deployment technologies. Sect. 4 and
Sect. 5 define and characterize cloud-native deploy-
ability, while Sect. 6 shows a deployment modeling
example. Finally, Section 7 and Sect. 8 discuss re-
lated work and draw some concluding remarks.

2 CLOUD-NATIVE APPS:
CHARACTERISTICS

Cloud-nativeness gained momentum over the last
years, with the rise of the Cloud Native Comput-
ing Foundation (CNCF, 2019). The latter defines
cloud-native technologies as the enablers for build-
ing and running scalable applications in modern, dy-
namic environments, such as public, private or hybrid
clouds. Containers, (micro)service compositions, im-
mutable deployment infrastructures and declarative
APIs are concrete examples in this direction (Kratzke
and Quint, 2017). They indeed enable the creation
and enactment of loosely coupled systems (Hohpe
and Woolf, 2004) that are resilient, manageable, and
observable. If combined with robust automation, they
allow engineers to enact changes while at the same
time minimizing toil (CNCF, 2019).

Fehling et al. first isolated some of the charac-
teristics of cloud-native applications by prescribing
them to be IDEAL (Fehling et al., 2014), i. e., in-
dicating that they should be (i) with isolated state,
(ii) distributed in their nature, (iii) elastic, (iv) op-
erated via automated management systems, and (v)
made of loosely coupled components. By system-
atically integrating such characteristics with other
emerging in published white literature, Kratzke and

Quint (2017) managed to distill the properties charac-
terizing a cloud-native application. They define it as a
“distributed, elastic and horizontally scalable system
composed of (micro)services, which isolates states
in a minimum of stateful components” (Kratzke and
Quint, 2017). Further, they define that the “applica-
tion and each self-contained deployment unit of that
application is designed according to cloud-focused
design patterns and operated on a self-service plat-
form” (Kratzke and Quint, 2017). The findings by
Kratzke and Quint (2017) were then confirmed by
later published gray literature, e. g., the blog posts and
whitepapers by Microsoft (Vettor and Smith, 2019),
New Stack (Janakiram MSV, 2018), Pivotal (Pivotal
Software, Inc., 2019), Red Hat (Red Hat, Inc., 2019),
and Stackify (Janssen, 2018). Even if the list of cloud-
native characteristics could be elaborated further, all
above mentioned works agree with Kratzke and Quint
(2017) in saying that the following are the main char-
acteristics of cloud-native applications:
C1: Service-based architectures. Cloud-native ap-

plications are designed as suites of loosely-
coupled (micro)services. Each service exists inde-
pendently from the other services forming an ap-
plication, hence allowing their independent devel-
opment and operation (Kratzke and Quint, 2017).
At the same time, a service typically interacts with
other services in an application, which are discov-
ered by exploiting features provided by the ap-
plication runtime (Pivotal Software, Inc., 2019).
This allows to compose services and form cloud-
native applications.

C2: API-based interactions. Service-to-service
communications in cloud-native application are
API-based. The services forming an application
indeed publish APIs to offer their functionalities,
and they connect to and consume the APIs of
other services in the application (Vettor and
Smith, 2019). APIs are typically based on
well-known standard protocols (e. g., REST over
HTTP), and each component in a cloud-native
application should be encapsulated by offering its
API (Janssen, 2018; Vettor and Smith, 2019).

C3: State isolation. Cloud-native applications are
designed with a clear separation among stateless
and stateful services. Stateless services exist inde-
pendently from stateful services, even if interact-
ing with them, making them easy to scale in/out.
Stateful services instead follow a different pattern
for assuring higher availability and resiliency of
persisted data (Fehling et al., 2014). This is done
by typically exploiting natively scalable storage
systems in the form of eventual consistent NoSQL
databases (Kratzke and Quint, 2017).



C4: Self-contained service deployment. The ser-
vices forming a cloud-native application are
packaged in standardized, self-contained deploy-
ment units (Red Hat, Inc., 2019). Deployment
units wrap services in virtual runtime envi-
ronments containing everything services need
to run, i. e., their source code and necessary
runtime support (system tools, system libraries,
etc.). This guarantees isolation among services
running in different deployment units, and that
they will always run the same, independently
from the execution environment, whether it is
on-premise or on third-party clouds, or whether
it is a development, testing, or production en-
vironment (Janssen, 2018). Currently, beside
PaaS and FaaS, containerization is a key enabler
for self-contained deployment of the services in
a cloud-native application (Kratzke and Quint,
2017; Pahl et al., 2019).

C5: Disposability. The actual instances of the ser-
vices forming a cloud-native application are dis-
posable (Vettor and Smith, 2019). This is a pre-
requisite for favoring both fast startups and scala-
bility of services and graceful shutdown for leav-
ing applications in correct state, which are both
peculiar properties of cloud-native applications.
Currently existing container-based technologies
inherently satisfy this requirement (Pivotal Soft-
ware, Inc., 2019; Pahl et al., 2019).

C6: Fault-resilience. Failures are first-class citizens
in cloud application deployment and management
(Brogi et al., 2018), hence requiring cloud-native
applications to treat failures as first-class citizens
as well. Cloud-native applications indeed as-
sume that service instances can fail at any time
and feature mechanisms ensuring fault-resilience
(Kratzke and Quint, 2017; Soldani et al., 2018).
The services forming an application are built for
tolerating the failure of the other services they in-
teract with, typically by exploiting cloud-native
design patterns, e. g., circuit breakers (Vettor and
Smith, 2019). At the same time, the platforms ex-
ploited for deploying and managing cloud-native
applications are suitably configured to automati-
cally recover failed service instances.

C7: Infrastructure abstraction. Cloud-native ap-
plication abstract from underlying infrastructure
and operating system dependencies, by operating
at a higher abstraction level (Janssen, 2018;
Pivotal Software, Inc., 2019). An enabler in this
direction is the exploitation of above mentioned
self-contained deployment units, which allow
to distribute the services of an application over
multiple, heterogeneous clouds (Kratzke and

Quint, 2017). This is typically achieved by
exploiting self-service deployment platforms,
allowing to ship and scale deployment units on
IaaS or PaaS clouds (Red Hat, Inc., 2019).

C8: Infrastructure as code. Cloud-native applica-
tions are highly automated, from their delivery
and deployment to their management, scaling,
and monitoring (Janssen, 2018; Vettor and Smith,
2019). Such automation is typically achieved us-
ing infrastructure as code (Pivotal Software, Inc.,
2019), i. e., through machine-readable files allow-
ing to specify the desired configuration for an ap-
plication and its components (Morris, 2016).

C9: Policy-driven elasticity. Cloud-native applica-
tions are horizontally scalable, meaning that each
of their services can be scaled in/out, by adapting
the amount of replicas (Janssen, 2018). This is
done by relying on self-service deployment plat-
forms, which are configured through scaling poli-
cies, indicating how to dynamically (re-)allocate
computing resources to services, to continuously
satisfy the ongoing needs of an application (Piv-
otal Software, Inc., 2019; Red Hat, Inc., 2019).

C10: CI/CD compliance. Cloud-native applications
are developed by embracing continuous integra-
tion and continuous deployment/delivery (CI/CD)
DevOps paradigm (Kratzke and Quint, 2017).
Each service of a cloud-native application is de-
veloped in a separate code base and possibly
equipped with its own deployment pipeline (Vet-
tor and Smith, 2019). This allows different ser-
vices to be developed by different teams using dif-
ferent technologies, and to release service updates
as soon as they are available, also throughout short
and continuous delivery cycles (Janssen, 2018).

Deployment technologies can hence be consid-
ered to feature cloud-native deploy-ability if they na-
tively support cloud-native applications in exhibiting
the above-listed characteristics. A discussion con-
cerning the influence on deployment technologies is
presented in the following section.

3 ON DEPLOYING
CLOUD-NATIVE
APPLICATIONS

This section presents the first contribution of this
work in the form of an analysis of required features of
deployment technologies for automating the deploy-
ment of arbitrary cloud-native applications. The def-
inition by Kratzke and Quint (2017) as well as the



characteristics C4 (standardized, self-contained ser-
vice deployment) and C7 (infrastructure abstraction)
imply that cloud-native applications are intended to
run in public, private, or hybrid cloud environments
offering self-service capabilities. Thus, deployment
technologies must support the deployment of cloud-
native applications to different cloud providers, envi-
ronments, and platforms.

Further, characteristics C3 (state isolation), C4
(standardized, self-contained service deployment),
and C5 (disposability) imply the fact that a deploy-
ment technology needs to provide the ability to de-
ploy application components on top of IaaS, i. e., to
containerized environments, PaaS offerings, and FaaS
platforms. Even the use and instrumentation of exist-
ing SaaS offerings to implement application compo-
nents need to be supported. Thus, deployment tech-
nologies must support the use of all cloud service
models (XaaS) to deploy cloud-native applications,
i. e., to deploy on IaaS, PaaS, FaaS, and SaaS.

To foster automation and to conform to C10
(CI/CD compliance), deployment technologies must
provide interfaces that can be used in combination
with existing technologies for enacting and automat-
ing deployment processes, e. g., Jenkins or Travis.
Thus, deployment technologies must provide one
or more options to integrate with external systems,
e. g., by providing SDKs, command-line interfaces,
or APIs, either local or remotely accessible (such as
REST APIs over HTTP). For example, AWS Cloud-
Formation provides several SDKs in different pro-
gramming languages, an HTTP API, and a CLI to au-
tomate the interaction with AWS.

On top of that, to support C8 (infrastructure as
code) and to establish a repeatable and consistent
workflow to automate the release cycle, deployment
technologies must provide the ability to express the
application deployment in machine-readable formats,
i. e., in so-called deployment models. They can be cat-
egorized into two types: (i) imperative models and (ii)
declarative models (Endres et al., 2017). The main
idea of imperative models is to describe a detailed,
executable process specifying all necessary technical
tasks to be executed, their implementations, and their
order. In contrast, declarative models only describe
the components to be deployed, their configurations,
and the relations between them, but hardly provide
executional details. Declarative models, hence, need
to be interpreted by a deployment technology deriv-
ing the technical deployment instructions to reach the
desired state. Therefore, C1 (service-based architec-
tures) implies that deployment technologies must pro-
vide the ability to structure the application deploy-
ment into physical, functional, or logical units by

defining the deployment specifics of application com-
ponents inside a deployment model, while C9 (policy-
driven elasticity) implies that the definition of such
application components should be done in a declara-
tive manner, as this is the most appropriate approach
for application deployment and configuration man-
agement (Herry et al., 2011; Wurster et al., 2019b).

Moreover, the characteristics C3 (state isola-
tion), C4 (standardized, self-contained service de-
ployment), and C7 (infrastructure abstraction) imply
that deployment technologies must offer the ability to
express different types of application components in
their deployment. For example, it must be possible
to express the deployment of a virtual machine, the
installation of a web server component on top of it,
as well as the deployment of containerized applica-
tions and functions running on a FaaS platform. How-
ever, a deployment technology must not support all
kinds of cloud service models from all kinds of cloud
providers natively. The deployment technology it-
self could be extensible in two ways: (i) at the de-
ployment modeling language level, where ontologi-
cal types are used for extensibility and provided as
reusable entities across different application deploy-
ments (Bergmayr et al., 2018), or (ii) at the deploy-
ment system level, where a plugin mechanism pro-
vides a clearly described interfaces to extend the set of
deployable component types or host environments on
which components can be deployed. A plugin, in this
context, is a software component that adds a specific
feature to an existing deployment technology without
changing the actual source code of it.

Lastly, characteristic C2 (API-based interaction)
implies the ability to express the notion that a spe-
cific application component connects to another one.
For example, the deployment model of a deployment
technology must support the definition of a respective
relation between a web application and an arbitrary
backing service expressing the fact that the web ap-
plication connects to the service during runtime.

In summary, all characteristics (C1-C10) from
Sect. 2 impact on what a deployment technologies
should support, if looking at them from the perspec-
tive of automating the deployment of cloud-native ap-
plications. From this perspective, deployment tech-
nologies must support the automated deployment by
using deployment models to deploy on different cloud
providers and platforms and on all cloud service mod-
els. In the following section, we build on top of this
analysis to derive and introduce three essential fea-
tures for deployment technologies for automating the
deployment of cloud-native applications, i. e., to fea-
ture cloud-native deploy-ability.



4 CLOUD-NATIVE
DEPLOY-ABILITY

In Sect. 2 we presented application-centric charac-
teristics, based on the current cloud-native research,
that must be supported by applications to be consid-
ered as cloud-native. In Sect. 3 we analyzed what ex-
actly it means for a deployment technology to sup-
port those characteristics. In this section, we build on
top of the result of our analysis and discuss an initial
set of features that must be supported by deployment
technologies to deploy arbitrary cloud-native appli-
cations, i. e., (i) support for multiple cloud providers
and platforms, (ii) support for all cloud service mod-
els (XaaS), (iii) usage of deployment models sup-
porting arbitrary components. We hereafter present
a first definition of cloud-native deploy-ability recap-
ping features (i-iii), which we then explain in detail in
Sects. 4.1, 4.2, and 4.3.

Cloud-native deploy-ability describes
the ability to deploy arbitrary application
components, concerning all cloud service
models, that can be vertically “hosted
on” or horizontally “connected to” any
other component or service hosted on any
cloud provider, cloud platform, or hy-
brid environment. This includes support-
ing the processing of declarative deploy-
ment models given in machine-readable
formats fostering automation.

4.1 Support for Multiple Cloud
Providers and Platforms

From the analysis in Sect. 3 we can derive that a de-
ployment technology must support the deployment of
application components to multiple cloud providers
and platforms to comply with C4 (standardized, self-
contained service deployment) and C7 (infrastructure
abstraction). This includes the deployment to pub-
lic cloud offerings such as Amazon Web Services
(AWS) or Microsoft Azure. Further, this also requires
the capability to deploy applications to self-hosted
platforms such as OpenStack. Even more, deploy-
ment technologies need to support hybrid cloud de-
ployments, i. e., the distribution of application com-
ponents to different cloud providers. For example, by
executing an automated deployment, it must be possi-
ble to deploy certain application components to a pub-
lic cloud provider (e. g., AWS) and others to a self-
hosted platform (e. g., OpenStack). This increases
flexibility and enables the possibility to target differ-

ent environments for different use cases in the appli-
cation development lifecycle, e. g., to deploy differ-
ently for development, testing, and production.

4.2 Support for all Cloud Service
Models (XaaS)

The analysis in 3 showed that providing the ability
to deploy on IaaS offerings may not be enough to
deal with cloud-native applications (Leymann et al.,
2017). To support the disposability (C5), self-
contained (C4), and state isolation (C3) aspects of
cloud-native apps, deployment technologies must be
able to target containerized environments as well as
PaaS offerings. Further, lately the serverless comput-
ing paradigm has gained momentum (CNCF, 2018a).
The term serverless is often linked with the arisen
Function as a Service (FaaS) cloud delivery model.
The idea of FaaS is to develop and deploy custom
server-side logic in the form of ephemeral and state-
less functions employing an event-driven program-
ming model (CNCF, 2018a). With the use of server-
less and FaaS, developers increase infrastructure ab-
straction as the management and scaling of required
computing resources remain fully the responsibility
of cloud providers. This is why FaaS can be consid-
ered as an enabler for cloud-native application com-
ponents and, therefore, must be supported by de-
ployment technologies (Gannon et al., 2017; Roberts,
2016). Moreover, to exploit the full stack of cloud ser-
vice models, deployment technologies have to enable
the use and instrumentation of existing SaaS offerings
to implement application components. Thus, deploy-
ment technologies must support the use of all cloud
service models to deploy cloud-native applications.

4.3 Usage of Deployment Models
Supporting Arbitrary Components

Automation plays a major role in developing and run-
ning cloud-native applications. Further, the emer-
gence of containers to implement microservices and
new cloud service models such as FaaS, requires that
a deployment technology can be used to express the
deployment of such applications components using
their deployment model mechanics. This requires the
usage of deployment models and the ability to de-
fine the deployment of arbitrary applications compo-
nents in a declarative manner, which in turn complies
with the presented characteristics C2 (API-based in-
teraction), C3 (state isolation), C4 (standardized, self-
contained service deployment), C7 (infrastructure ab-
straction), and C8 (infrastructure as code).



This means for deployment technologies to pro-
vide the ability to express the application deployment
in a declarative model by defining arbitrary compo-
nents based on arbitrary component types and respec-
tive relations among them. Notably, component types
are either natively provided, or the deployment tech-
nology is extensible (cf. Sect. 3) such that custom
component types can be introduced. As depicted in
Fig. 1, this means that it must be possible to express
constellations of components and relations defining
that a component A is “hosted on” or “contained in”
a component B, such that component A is the hosted
component and component B is the hosting compo-
nent. For example, a Tomcat web server is hosted
on a Ubuntu virtual machine. Further, deployment
technologies must be able to express constellations
of components and relations specifying that a com-
ponent X “connects to” or “invokes” a component Y,
such that component X is the connecting component
and component Y is the connected component. For
example, a web application needs to establish a con-
nection to a managed messaging service.

5 DEPLOYMENT MODELING
SUPPORT: FORMALIZATION

In the last section we identified that an important as-
pect is to express arbitrary constellations of compo-
nents and relations in deployment models. In terms
of deployment model expressiveness, we can charac-
terize cloud-native deploy-ability in terms of two sep-
arate sub-characteristics, i. e., vertical and horizontal
deploy-ability. Therefore, as a second contribution of
this work, we hereafter provide a formal definition of
such characteristics.

Wurster et al. (2019b) showed that the top-most
deployment technologies employing declarative mod-
els share similar modeling constructs. All of them
provide the notion of components to describe logi-
cal units, relations to specify dependencies between
components, and component types and relation types
to convey reusable semantics, which was published
as the Essential Deployment Metamodel (EDMM). It
has been derived by conducting a systematic review
of the 13 top-most deployment automation technolo-
gies and describes the essential modeling elements
supported by declarative deployment models used in
practice (Wurster et al., 2019b). Figure 2 shows a
simplified version of EDMM describing components,
used to form an application deployment model, as
well as the component types, allowing to distinguish
them and giving them semantics.

According to EDMM, a Component is a physi-
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Figure 1: Deployment technologies must be able to deploy
components hosted on other components (left) and to de-
ploy components connecting to other components (right).

cal, functional, or logical unit of an application, while
a Component Type is a reusable entity that specifies
the semantics of a component that has this type as-
signed. For example, a component representing the
deployment of a Tomcat server may be of type Tom-
cat while a component representing the provisioning
of a virtual machine (VM) may be of type Compute.
While a component represents the deployment for a
specific application, the component type can be used
in different deployment models. Components often
depend on other components, which is specified by
relations between components. A Relation is a di-
rected physical, functional, or logical dependency be-
tween exactly two components, while a Relation Type
is a reusable entity that specifies the semantics of a
relation that has this type assigned. For example, a
relation between a Tomcat server and its hosting com-
pute component may of type hosted on, while a rela-
tion expressing that a component connects to another
component may of type connects to.

Formally, an EDMM deployment model is a di-
rected graph, which nodes represent application com-
ponents, and which edges represent inter-component
relations. Let M be the set of all valid EDMM de-
ployment models (i. e., all deployment models hav-
ing syntactically and semantically correct constella-
tions of components and relations) then a deployment
model m ∈M is defined by the following tuple1:

m = 〈Cm,Rm,CTm,RTm, typem,supertypem〉

The elements of EDMM are defined as follows:

• Cm is the set of Components in m, whereby each
ci ∈Cm represents a component of the application
to be deployed.

• Rm ⊆ Cm × Cm is the set of Relations in m,
whereby each ri = (cs,ct)∈ Rm models a relation-
ship between two components, with cs being the
source of the relationship and ct being its target.

1The tuple defines a deployment model according to the
simplified EDMM considered in this paper. Full EDMM
definitions have been provided by Wurster et al. (2019b).
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Figure 2: Simplified Essential Deployment Metamodel (EDMM).

Table 1: Formal definitions of vertical and horizontal deployability based on the simplified EDMM. Therein, hostedOn is
a generic relationship type denoting the hosting of a component in another, while connectsTo is a generic relationship type
denoting the connection of a component to another (cf. Fig. 1). Additionally, canDeploy(t,m) is a predicate used to denote
that a given (valid) deployment model m ∈M can be deployed by deployment technology t ∈ T .

arbitraryVerticalDeployAbility(t) ⇐⇒
∀ct1,ct2 ∈CT .∃m ∈M :

(∃c1,c2 ∈Cm,r = 〈c1,c2〉 ∈ Rm .type(c1) = ct1∧ type(c2) = ct2∧hostedOn ∈ supertypes(r))∧canDeploy(t,m)

arbitraryHorizontalDeployAbility(t) ⇐⇒
∀ct1,ct2 ∈CT .∃m ∈M :

(∃c1,c2 ∈Cm,r = 〈c1,c2〉 ∈Rm .type(c1)= ct1∧type(c2)= ct2∧connectsTo∈ supertypes(r))∧canDeploy(t,m)

• CTm is the set of Component Types in m, whereby
each cti ∈ CTm describes the semantics for the
components that have this type assigned.

• RTm is the set of Relation Types in m, whereby
each rti ∈ RTm describes the semantics for the Re-
lations that have this Relation Type assigned.

• typem is a map that assigns all Model Elements in
m to their respective Model Element Type. Letting
MEm := Cm ∪ Rm be the union set of all Model
Elements of m, and METm := CTm ∪RTm be the
unioin set of all Model Element Types of m, typem
is defined as follows:

typem : MEm→METm

• supertypem is a partial function mapping each
Model Element Type to its respective supertype.
It associates a meti ∈METm with a met j ∈METm
where i 6= j, i. e., that met j is the supertype of meti:

supertypem : METm→METm

For simplifying notation, we hereafter also use the
partial function supertypesm to map a Model Ele-
ment Type meti ∈ METm to the set containing all
supertypes. The latter can be easily computed by
computing the transitive closure of supertype, i. e.,
supertypes = supertype+:

supertypesm : METm→ 2METm

Following this, we define two requirements for mod-
eling arbitrary component-relation-constellations as
a feature for deployment technologies to support de-
ploying arbitrary cloud-native applications:

Arbitrary Vertical Deploy-Ability. The ability
to deploy arbitrary types of hosted compo-
nents on arbitrary types of hosting compo-
nents. This is depicted in Fig. 1 (left-hand
side) and formalized in Table 1 (by predicate
arbitraryVerticalDeployAbility).

Arbitrary Horizontal Deploy-Ability. The abil-
ity to deploy arbitrary types of components
connecting to other types of components.
This is depicted in Fig. 1 (right-hand side)
and formalized in Table 1 (by predicate
arbitraryHorizontalDeployAbility).

However, deployment technologies may be restricted
in their ability to use arbitrary constellations of com-
ponents and relations. AWS CloudFormation (Ama-
zon Web Services, Inc., 2018), for example, has a
limited set of component types as this deployment
technology is only intended to be used with the AWS
cloud services. Further, Kubernetes (CNCF, 2018b) is
considered to be multi-cloud deployable (many cloud
offer managed clusters), but is limited in component
types as only containers can be used. If such technolo-
gies comply with the derived feature requirements,
but are restricted in component and relation types,
we speak of single-environment cloud-native deploy-
ability. Notably, we speak of multi-environment
cloud-native deploy-ability if a deployment technol-
ogy complies with the definition above. For example,
TOSCA (OASIS, 2019) and Terraform (HashiCorp,
2018) are considered as such, since both support the
usage of arbitrary component types, either natively or
by providing respective extension mechanisms.



6 DEPLOYMENT MODELING
EXAMPLE

We hereafter introduce a simple yet effective exam-
ple to show a deployment model that follows our
formalized description from Sect. 5 based on a con-
crete cloud-native deployment scenario. Figure 3 de-
picts the scenario and shows a Java application named
“Pet Clinic”, implemented using the Java framework
Spring Boot. In the depicted scenario, the web ap-
plication is hosted on AWS Beanstalk, the platform as
a service (PaaS) offering by Amazon Web Services
(AWS). Further, the application connects to a MySQL
database to store its data. The database in this cloud-
native scenario is hosted on Amazon Aurora, which
is a fully managed MySQL database as a service
(DBaaS) offering by AWS. By using EDMM’s meta-
model entities, we can express the structure of such
a cloud-native application in a technology-agnostic
way. For example, the “Pet Clinic” application is a
component, which also references a component type
(Web App) to define further semantics. Further, the
“Database” component defines several properties that
can be used to configure the deployment. Moreover,
the Java application and the database component have
an artifact attached which is, for example, a packaged
WAR file in case of the Java application and a SQL
file containing the actual database schema and initial
data of the database component.

Even this simple example shows concretely the re-
quirement that deployment technologies must be able
to deploy arbitrary component types on top of other
ones, e. g., that the Java web application is hosted on
AWS Beanstalk. Further, it highlights that it is also
required to express that arbitrary components connect
to other types of components, e. g., that the web ap-
plication connects to a database at runtime. Hence,
the deployment technology has to execute the deploy-
ment of the components in a certain order, e. g., the
database stack on the right-hand side of Fig. 3 must be
deployed before the application stack on the left-hand
side. The order in EDMM terminology is defined by
defining typed relations (“HostedOn” or “Connect-
sTo” relations in Fig. 3) between two components.
Moreover, in the case of so-called connects to rela-
tions, it implies that a deployment technology must
provide the possibility to inject endpoint and creden-
tial information of related components. In practice,
cloud-native applications often use environment vari-
ables to configure the application’s logic. For exam-
ple, the information required to connect to the mod-
eled database is made available at runtime by inject-
ing the respective deployment model properties into
the application’s environment.

App Runtime
(AWS Beanstalk)

Region: eu-west-1
Arche Type: java
Max Instances: 5

Pet Clinic
(Web App)

Java WAR

Database
(MySQL DB)

Schema: petclinic
User: pc
Password: pc

DBMS
(AWS Aurora)

Region: eu-west-1
Instance Type: small

HostedOnConnectsTo

Figure 3: Simple cloud-native application expressed as
EDMM-based deployment model2.

The concrete deployment model, which can be ex-
ecuted using a certain deployment technology can be
created manually by an application developer or oper-
ations engineer. Using Ansible, a Playbook can be de-
veloped containing the definitions to deploy the appli-
cation: first, the deployment of the database compo-
nent hosted on AWS Aurora, then the Java application
hosted on AWS Beanstalk. Additionally, the Play-
book also defines that the database connection creden-
tials are injected using environment variables to the
AWS Beanstalk runtime such that the Java applica-
tion can be started accordingly. Similarly, this can be
also realized by using AWS CloudFormation, the in-
frastructure as code (IaC) tooling provided by AWS.
In a declarative manner, a CloudFormation template
allows you to define and provision the needed AWS
resources including their configuration and wiring.

However, EDMM as a normalized metamodel
provides the basis for technology-independent de-
ployment modeling. Also, recent work showed that
it can be used to facilitate the automated transfor-
mation in different concrete deployment technolo-
gies Wurster et al. (2019a). Using EDMM tooling,
a user can model the deployment of an application
graphically by specifying the components to be de-
ployed, their configurations, implementations, and re-
lations to other components. By applying transforma-
tion rules to such a model, depending on the selected
target deployment technology, the abstract EDMM
model can be transformed into a concrete deployment
technology. The output of the EDMM Transforma-
tion Framework is an executable, technology-specific
deployment model, which can be executed using the
selected technology. The tooling is open-source and
respective examples are available online on GitHub3.

2http://bit.ly/39OYPMx
3https://github.com/UST-EDMM

http://bit.ly/39OYPMx
https://github.com/UST-EDMM


7 RELATED WORK

Several existing research efforts provide statements
regarding cloud-nativeness of software solutions,
with that by Kratzke and Quint (2017) perhaps be-
ing one of the most prominent efforts in this direc-
tion. By studying published research (i. e., Fehling
et al. 2014; Kratzke and Peinl 2016; Leymann et al.
2017; Stine 2015; just to mention some) and existing
trends in engineering such applications, they defined
the term “cloud-native application” as a distributed,
elastic, and horizontally scalable system composed of
services and operated on self-service platforms, while
the services itself are designed as self-contained de-
ployment units according to cloud design patterns.

Other noteworthy studies defining cloud-
nativeness of applications come from practitioners
daily working with them, e. g., blog posts and
whitepapers published by renowned IT players,
practitioners and companies (Vettor and Smith, 2019;
Red Hat, Inc., 2019; Pivotal Software, Inc., 2019;
Janakiram MSV, 2018; Janssen, 2018). Also, the
Cloud Native Computing Foundation was founded in
2015 to help aligning the industry and coordinate its
evolution, with the support of large companies (i. e.,
Google, IBM). They shaped the notion of cloud-
native applications over the last years (CNCF, 2019)
and defined it as an enabler for building and running
scalable applications in modern environments.

The study by Kratzke and Quint (2017) and the
industrial effort mentioned above however focus on
defining what a cloud-native application is. In our
study, we instead plan to pursue a different charac-
terization, i. e., knowing how cloud-native application
are characterized, can we understand whether an ex-
isting deployment technology can actually support the
deployment of arbitrary cloud-native applications?

On the deployment technology side, there are sev-
eral publications available comparing and classify-
ing tools and platforms regarding their set of fea-
tures and their intended use (Masek et al., 2018; Wet-
tinger et al., 2016; Weerasiri et al., 2017). Further,
Wurster et al. (2019b) conducted a systematic re-
view of the 13 top-most deployment automation tech-
nologies and introduced the categorization general-
purpose, provider-specific, and platform-specific of
such. The categorization was done to find common-
alities between deployment technologies to derive a
metamodel for creating technology-independent de-
ployment models, while those being transformable
into concrete technologies (Wurster et al., 2019b,a).

However, the recent publications either consider-
ing the engineering part of the application itself or
classifying deployment technologies regarding their

features or use cases. To the best of our knowledge,
no published work provided means to analyze deploy-
ment technologies regarding their ability to deploy
arbitrary cloud-native applications. That is the main
reason motivating our work, in which we aim at an-
alyzing what does it mean to deploy arbitrary cloud-
native applications and what kind of features a respec-
tive deployment technology must provide.

8 CONCLUSIONS

Cloud-nativeness emerged as a paradigm and enabler
for building and running scalable applications in mod-
ern cloud environments (Kratzke and Quint, 2017).
Beyond that, it is equally important that such built ap-
plications can be effectively deployed. In this work,
we presented three features a deployment technology
requires to deploy arbitrary cloud-native applications.
We derived these attributes by analyzing the current
research around what cloud-native means. We then
exploited such characteristics to provide a first defini-
tion of cloud-native deploy-ability.

It is worth highlighting that both the presented
features and the definition of cloud-native deploy-
ability aims at performing a first step towards classi-
fying and assessing the support for deploying cloud-
native applications provided by existing deployment
technologies. We plan to refine and extend them
in future work, to use them in a comprehensive re-
view and classification framework to assess existing
deployment technologies concerning their ability to
deploy arbitrary cloud-naive applications. In gen-
eral, other dimensions should be considered to fully
classify deployment technologies, e. g., characteris-
tics of the employed modeling language or the exten-
sibility of the deployment technology itself. There-
fore, as immediate future, we emerge our contribution
to a complete review framework capable of evaluat-
ing and classifying deployment technologies, to ulti-
mately provide a decision support system for the se-
lection of the right deployment technology.

Further, in future work we want to address
influencing factors such as service level agree-
ments (SLAs) or scalability attributes of components.
For example, based on EDMM we are able to anno-
tate SLAs for certain components in a technology-
agnostic way and provide additional tooling to check
the conformance of those SLAs for different tech-
nologies and cloud environments.
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