
This is the author’s version of the work. It is posted for your personal use. Not
for redistribution. The definitive version was published in Proceedings of the 10th
International Conference on Cloud Computing and Services Science (CLOSER), pp.
216–226, 2020, doi: 10.5220/0009794302160226.

TOSCA Light: Bridging the Gap Between the TOSCA Specification and
Production-Ready Deployment Technologies

Michael Wurster1, Uwe Breitenbücher1, Lukas Harzenetter1,
Frank Leymann1, Jacopo Soldani2 and Vladimir Yussupov1

1 Institute of Architecture of Application Systems, University of Stuttgart, Germany
2 Department of Computer Science, University of Pisa, Pisa, Italy

[lastname]@iaas.uni-stuttgart.de, [lastname]@di.unipi.it

Keywords: Deployment Automation, Cloud Computing, TOSCA.

Abstract: The automation of application deployment is critical because manually deploying applications is time-
consuming, tedious, and error-prone. Several deployment automation technologies have been developed in
recent years employing tool-specific deployment modeling languages. At the same time, the OASIS standard
Topology Orchestration Specification for Cloud Applications (TOSCA) emerged as a means for describing
cloud applications, i. e., their components and relationships, in a vendor-agnostic fashion. Despite TOSCA is
widely used in research, it is not supported by the production-ready deployment automation technologies daily
used by practitioners working with cloud-native applications, hence resulting in a gap between the state-of-the-
art in research and state-of-practice in the industry. To help bridging this gap, we leverage the recently intro-
duced Essential Deployment Metamodel (EDMM) and identify TOSCA Light, an EDMM-compliant subset of
TOSCA, to enact the transformation from TOSCA to the vast majority of deployment automation technology-
specific models used by today’s software industry. Further, we present an end-to-end TOSCA Light modeling
and transformation workflow and show a prototypical implementation to validate our approach.

1 INTRODUCTION

Modern software engineering industry focuses heav-
ily on strengthening the synergy between develop-
ment and operation processes, commonly referred to
as DevOps (Humble and Molesky, 2011). One of
the most important approaches is Infrastructure as
Code (IaC), which allows application developers and
operation engineers to specify the infrastructure of to-
be-deployed applications “as code”, which can then
be processed by deployment automation technologies
such as Chef, Puppet, or Terraform.

Deployment automation technologies typically
rely on tool-specific declarative or imperative mod-
eling languages. Declarative languages allow to de-
scribe the “what”, i. e., the desired target state of the
components to be deployed, while imperative lan-
guages allow indicating the “how”, i. e., all technical
tasks to be executed for deploying and configuring
an application (Endres et al., 2017). Even if declar-
ative languages are by far considered to be the most
appropriate in practice (Wurster et al., 2019b), they
are tightly coupled to the corresponding deployment
automation technology, hence not favoring the porta-
bility of specified application deployments from one
deployment automation technology to another.

In contrast, the Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA) (OA-
SIS, 2019) is a standardized cloud modeling lan-
guage (CML) which allows to declaratively specify
application deployments in a portable way. While
TOSCA is heavily used in research (Bellendorf and
Mann, 2019), it is currently not supported by the
production-ready deployment automation technolo-
gies used by practitioners. As a result, a gap between
the state-of-the-art in research and industry is arising.

One possible way to bridge this gap is to lever-
age the recently introduced Essential Deployment
Metamodel (EDMM), which can be used to enable
standards-based CMLs (like TOSCA) to get sup-
ported by existing deployment automation tooling.
EDMM describes a set of core deployment modeling
entities that the vast majority of deployment automa-
tion technologies understand (Wurster et al., 2019b).
As a result, deployment models relying on the mod-
eling constructs specified in the EDMM are easily
convertible to multiple heterogeneous deployment au-
tomation formats, which is also shown by existing
work (Wurster et al., 2019a). However, for mapping it
to EDMM, and for seamlessly exploiting the ease-of-
transformation of EDMM models, a CML has to com-
ply with the set of requirements imposed by EDMM.

https://doi.org/10.5220/0009794302160226
https://doi.org/10.5220/0009794302160226

In this work, we present TOSCA Light, as an
EDMM-compliant subset of TOSCA. TOSCA Light
can be used for devising technology-agnostic ap-
plication specifications that can be translated to
technology-specific deployment artifacts, hence ex-
ploiting TOSCA to avoid coupling application de-
ployments with particular technologies, while en-
abling their deployment on production-ready deploy-
ment technologies at the same time. Thus, TOSCA
Light enhances the portability of models, requiring to
model application deployments only once, and then
allowing them to be reused for deploying applications
with different, heterogeneous technologies. The main
contributions of this paper are the following:

• We define the TOSCA Light subset of TOSCA, by
identifying the set of EDMM compliance rules for
TOSCA-based models.

• We describe an end-to-end TOSCA Light model-
ing and transformation workflow.

• We illustrate a proof-of-concept implementation
of the TOSCA Light toolchain.

The paper is organized as follows. Section 2 provides
some necessary background. Section 3 presents the
TOSCA Light. Section 4 illustrates the end-to-end
TOSCA Light modeling and transformation work-
flow, which prototypical implementation is shown in
Sect. 5. Finally, Sect. 6 discusses related work and
Sect. 7 draws concluding remarks.

2 BACKGROUND

This section presents the fundamentals and terminol-
ogy needed in the rest of the paper.

2.1 TOSCA

TOSCA is an OASIS standard that enables model-
ing, provisioning, and management of cloud appli-
cations (OASIS, 2019; Binz et al., 2012). TOSCA
allows to model so-called Service Templates that de-
scribe the topology, i. e., the components and their
relationships, of an application to be deployed to a
cloud infrastructure. The core modeling concepts
in TOSCA are nodes and relationships. So-called
Node Templates represent components of an appli-
cation, such as virtual machines, web servers, or ar-
bitrary software components, and so-called Relation-
ship Templates represent the relations between those
nodes, e. g., that a node is hosted on another node,
or that a node connects to another node. Node and
Relationship Templates are typed using Node Types
and Relationship Types defining their semantics, and

structuring them by listing their properties, attributes,
requirements, capabilities, and interfaces.

Properties and attributes are used to configure the
deployment, e. g., a “Tomcat” web server type may
specify the property “port”, which is filled with con-
crete values in the node template upon deployment.
In the TOSCA metamodel, nodes get related to each
other when one node has a requirement against some
capability provided by another node. For example,
a virtual machine node may offer the capability that
a Tomcat web server node can be hosted on it. Fur-
ther, TOSCA standardizes the so-called Lifecycle In-
terface specifying that node types may have “create”,
“configure”, “start”, “stop”, and “delete” operations
to be used for installing, configuring, starting, and
stopping them. Such operations are implemented by
so-called Implementation Artifacts, e. g., in the form
of executable Shell scripts. In contrast, Deployment
Artifacts implement a nodes’ business logic. For ex-
ample, the compressed binary files to run a Tomcat
web server are meant to be attached as a deployment
artifact to the respective type.

On top of that, TOSCA uses the notion of Policies
to express non-functional requirements affecting an
application topology at a certain stage of its lifecycle,
and which are attached to single or groups of nodes
in the application topology. For example, security
aspects that need to be enforced at certain stage can
be expressed via TOSCA policies (Yussupov et al.,
2019). Beside input and output parameters to param-
eterize a service template, TOSCA defines the CSAR
packaging format allowing to exchange applications.

2.2 Essential Deployment Metamodel

In recent years, many deployment technologies
evolved following a declarative approach to auto-
mate the delivery of software components. Even if
such technologies share the same purpose, they dif-
fer in features and supported mechanisms which is
why comparing and selecting deployment automation
technologies is difficult.

Recently, the Essential Deployment Metamodel
(EDMM) was introduced as the result of a sys-
tematic review of deployment automation technolo-
gies (Wurster et al., 2019b). In this work, the authors
extracted the essential modeling entities that are sup-
ported by the vast majority of declarative deployment
automation technologies. The EDMM enables a com-
mon understanding of declarative deployment mod-
els and, thus, eases the comparison and selection of
appropriate technologies. Figure 1 depicts the essen-
tial modeling entities of the normalized metamodel.
EDMM defines Components as physical, functional,

Relation
Type

Component
Type

is source of

is target ofis of type

is of type

implements

ComponentRelation

Property Operation
hashas Model

Entity
Artifact

Deployment
Model

contains

has

Figure 1: Essential Deployment Metamodel (EDMM) [adapted from Wurster et al. (2019b)].

or logical units of an application. Further, Relations
are defined as directed physical, functional, or log-
ical dependencies between exactly two components.
Both can be typed using Component Types and Re-
lation Types to express reusable entities that specify
a certain semantic. Further, EDMM defines Proper-
ties as a way to describe the current state or prescribe
the desired target state or configuration of a compo-
nent or relation. Moreover, Operations are used in
declarative deployment models to define executable
procedures performed to manage a component or re-
lation. Such operations provide hook points and are
executed by deployment technologies to implement
certain requirements during application deployment.
the EDMM also defines Artifacts such that an artifact
implements a component or operation and is therefore
required for the execution of the application deploy-
ment as well as the final application system. Finally,
according to EDMM, a Deployment Model describes
the desired target state of an application including all
necessary components, relations, properties, opera-
tions, and artifacts in a declarative manner.

3 TOSCA LIGHT

Recent work showed that an EDMM deployment
model can be transformed into 13 concrete deploy-
ment automation technologies, such as Terraform and
AWS CloudFormation (Wurster et al., 2019a). Thus,
by reducing TOSCA to EDMM’s essential modeling
entities, which we call TOSCA Light hereafter, we
enable the transformation of TOSCA Light-compliant
models into the deployment technologies that are
currently supported by the EDMM Transformation
Framework. In the following, we present the TOSCA
Light modeling profile which semantically maps to
the EDMM modeling constructs introduced in the
previous section. We show the supported TOSCA
Light modeling profile based on TOSCA’s YAML

grammar for describing service templates, type def-
initions, topology templates, their nodes, relation-
ships, and properties (OASIS, 2019). Further, for the
sake of clarity, we show several TOSCA Light exam-
ples and code snippets.

3.1 Service Template

A Service Template in TOSCA is used to define the
topology of application components and cloud ser-
vices so that they can be deployed in accordance with
constraints and policies. In particular, service tem-
plates allow the definitions of a topology template,
types (e. g., node, relationship, capability, artifact
types), groupings, policies, and constraints along with
any input or output parameters (cf. Sect. 2). How-
ever, not all of these entities are compliant to EDMM
and, therefore, not part of TOSCA Light. In general,
the Service Template entity of TOSCA’s metamodel
corresponds to EDMM’s Deployment Model as it de-
scribes declaratively the desired target state of an ap-
plication including all necessary model entities. List-
ing 1 shows the service template definition accord-
ing to TOSCA Light. It can include arbitrary node
types, relationship types and interface types, provided

tosca_definitions_version: tosca_light_yaml_1_0

metadata:

map of key/value pairs

description: <value>

node_types:

map of TOSCA Light node type definitions

relationship_types:

map of TOSCA Light relationship types

interface_types:

map of TOSCA Light interface types

topology_template:

TOSCA Light topology template definition

Listing 1: TOSCA Light service template.

that such definition are TOSCA Light-compliant (cf.
Sect. 3.2), as well as TOSCA Light-compliant topol-
ogy template definition (cf. Sect. 3.3). Moreover, de-
scription and metadata information can be defined to
convey additional information not required for the ac-
tual deployment automation.

Condition 1: A TOSCA Light-compliant service tem-
plate can only contain what follows:

Ô Description and additional metadata information,
with the latter given as a map of key/value pairs.

Ô Definitions of reusable TOSCA Light-compliant
node types.

Ô Definitions of reusable TOSCA Light-compliant
relationship types.

Ô Definitions of reusable TOSCA Light-compliant
Light interface types.

3.2 Type Definitions

TOSCA defines type entities, such as group types,
data types, capability types, and policy types. EDMM
generally does not define metamodel entities that map
to such TOSCA entities (cf. Fig. 1). Therefore, these
types cannot be semantically mapped to EDMM and
are not supported by TOSCA Light.

Further, TOSCA Light limits the use of interface
types. Wurster et al. (2019b) defined that EDMM al-
lows to hook into or influence the deployment life-
cycle. This means that application developers must
be able to specify operations along the application’s
deployment lifecycle, e. g., to install, start, stop, or
terminate components. As TOSCA standardizes the
Lifecycle Interface and defines the essential opera-
tions that must be supported, such as starting, con-
figuring, and stopping a component, the map of pos-
sible TOSCA Light interface types is restricted to this
single type. Hence, models defining custom interface
types are not supported by TOSCA Light.

Weerasiri et al. (2017) defined in their taxonomy
of cloud resource orchestration techniques that it must
be possible to express such that (i) a component gen-
erally depends on another component, (ii) a compo-
nent is “hosted on” or “contained in” another compo-
nent, and (iii) a component connects to another com-
ponent. Therefore, TOSCA Light limits the support
of relationship types to “DependsOn”, “HostedOn”,
and “ConnectsTo” as defined accordingly in the nor-
mative type reference of the TOSCA Simple Profile
specification (OASIS, 2019). Hence, custom relation-
ship types must inherit from these types, otherwise,
the model is not compliant with TOSCA Light.

Semantically, TOSCA node and relationship types

tosca_definitions_version: tosca_light_yaml_1_0

node_types:

<node_type_name>:

derived_from: <parent_node_type_name>

metadata:

map of key/value pairs

description: <value>

attributes:

map of TOSCA Light attribute definitions

properties:

map of TOSCA Light property definitions

interfaces:

map of TOSCA Light interface definition

artifacts:

map of TOSCA Light artifact definitions

Listing 2: TOSCA Light node type.

refer to EDMM’s Component Type and Relationship
Type metamodel entities. Such types specify the se-
mantics by means of properties and operations, and
are often meant to be reused in multiple deployment
models. The TOSCA Light modeling profile allows
the definition of attributes and properties on
such types, as shown in Listing 2 on the example of
node types. These are defined by a type (in accor-
dance to the YAML 1.2 spec), a description, an op-
tional default value, and a required flag, and corre-
spond to the Property entity in EDMM.

Apart from a “description” and additional “meta-
data” information, the map of artifacts corresponds
to the Artifact entity in EDMM. The map defines a
named list of files that are associated with this type
and used by deployment automation technologies to
facilitate the deployment and implementation of inter-
face operations. To hook into or influence the deploy-
ment lifecycle, a TOSCA Light node type may de-
fine several operations based on TOSCA’s standard-
ized lifecycle interface. Such operations correspond
to EDMM’s Operation entity and define possible ex-
ecutable procedures performed to deploy this type.

tosca_definitions_version: tosca_light_yaml_1_0

topology_template:

inputs:

map of TOSCA Light property definitions

outputs:

map of TOSCA Light property definitions

node_templates:

map of TOSCA Light node templates

relationship_templates:

map of TOSCA Light relationship templates

Listing 3: TOSCA Light topology template.

Condition 2: A specification is TOSCA Light-
compliant if the following constraints on types hold:

Ô The only employed interface type is the TOSCA’s
standard lifecycle interface.

Ô Employed relationship types are restricted to
TOSCA’s normative types “DependsOn”, “Hoste-
dOn”, and “ConnectsTo”, and to custom types de-
fined by extending such types.

Ô Node types and relationship types can define a
description and additional metadata information,
with the latter given as a map of key/value pairs.

Ô If node types and relationship types define “at-
tributes” and “properties”, these specify a type,
description, default value, and required flag.

Ô If node types and relationship types define oper-
ations, these are based on TOSCA’s standardized
lifecycle interface.

Ô If node types and relationship types list “artifacts”,
these are used to implement nodes, relations, or
interface operations.

3.3 Topology Template

A Topology Template defines the overall structure of
an application deployment and is part of a service
template. It contains the set of Node Template and
Relationship Template definitions that together define
the topology of the application as a directed graph,
which in turn correspond to the Components and Re-
lations entities in EDMM. Further, TOSCA Light al-
lows to define input and output parameters to param-
eterize a topology model instead of using fixed val-
ues only. Such parameters correspond to the Property
entity in EDMM and can be defined by a type (in ac-
cordance to the YAML 1.2 spec), a description, an
optional default value or a computed value by a com-
position of node properties. The “policy” and “work-
flow” construct defined by TOSCA (OASIS, 2019) is
not supported by TOSCA Light as there is no corre-
sponding entity in EDMM.

Listing 4 shows a simple TOSCA Light exam-
ple to install a MySQL database system on top of an
Ubuntu virtual machine. The Ubuntu virtual machine
and the MySQL software component are expressed as
separate node templates and specify the occurrences
of components as part of the deployment model. The
example shows how input parameters are used to pa-
rameterize the definition of the used root password.
Further, a “configure” script is assigned as an opera-
tion to execute custom logic during deployment.

Even more, the example highlights that TOSCA in
general relies on capabilities and requirements. For
example, capabilities are used to define additional
properties for a node, e. g., the type of operating sys-

tosca_definitions_version: tosca_light_yaml_1_0

topology_template:

inputs:

password:

type: string

port:

type: string

default: 3306

node_templates:

mysql:

type: tosca.nodes.DBMS.MySQL

properties:

root_password: { get_input: password }

port: { get_input: port }

interfaces:

Standard:

operations:

configure: configure.sh

requirements:

- host:

node: db_server

relationship: hosted_on

db_server:

type: tosca.nodes.Compute

capabilities:

os:

properties:

architecture: x86_64

type: linux

distribution: ubuntu

version: 18.04 LTS

relationship_templates:

hosted_on:

type: tosca.relationships.HostedOn

Listing 4: TOSCA Light template to install MySQL.

tem to be used. Further, TOSCA relies on matching
capabilities and requirements to express certain rela-
tionships between nodes, e. g., the “hosted on” rela-
tionship between the nodes in Listing 4.

However, TOSCA Light is not able to use re-
quirements and capabilities as a first-class model-
ing construct as there is no matching entity avail-
able in EDMM. Instead, TOSCA Light relies on the
defined normative requirements and capabilities of
the TOSCA Simple Profile (OASIS, 2019) and maps
them semantically to properties (cf. operating system
properties) or considers them as a relationship defini-
tion (cf. hosted on relationship). Moreover, advanced
TOSCA features such as “substitution mappings” or
the node_filter setting are in general not supported
by TOSCA Light. Anyhow, a TOSCA modeling tool
that supports both, TOSCA and TOSCA Light, could
try to resolve open requirements, resolve substitutable
types, and resolve the node_filter setting based on
a given TOSCA type repository before further pro-
cessing it as a TOSCA Light model.

Condition 3: A TOSCA Light-compliant topology
template can only contain what follows:

Ô Definition of “input” and “output” parameters,
each specifying a type, description, value, or com-
puted value by a composition of properties.

Ô Node templates declaratively specifying the com-
ponents to be deployed.

Ô Relationship templates indicating the functional
or logical dependency between two nodes.

Ô Concrete values assigned to defined “properties”.
Ô Additional operation definitions, still based on

TOSCA’s normative lifecycle interface.
Ô Usage of TOSCA’s normative “capabilities”.

3.4 Defining TOSCA Light

In summary, a TOSCA application has to satisfy con-
ditions 1, 2, and 3 respectively discussed in Sect. 3.1
to 3.3 to be compliant with TOSCA Light.

Condition 1 defines that a TOSCA Light service
template, among the description and additional de-
scriptive metadata information, defines reusable sets
of TOSCA Light compliant node types, relationship
types, and interface types.

Condition 2 restricts type definitions. TOSCA
Light only allows the usage of the standard lifecycle
interface and the normative relationship types defined
by the TOSCA standard. Hence, custom relationship
types must inherit from the normative types. Further,
the definition of “operations” on node types and rela-
tionship types must be based on the standard lifecycle
interface. Along with description and metadata, node
types and relationship types may define “attributes”
and “properties” to describe the current state or de-
sired target state of configuration. Finally, node types
and relationship types may define “artifacts” to imple-
ment nodes, relations, or interface operations.

Condition 3 defines additional restrictions on
topology templates. TOSCA Light compliant topol-
ogy templates may define “input” and “output” pa-
rameters. Further, a set of node templates and re-
lationship templates define the declarative specifica-
tion of components to be deployed and the func-
tional or logical dependency between them. More-
over, node templates and relationship templates may
assign concrete values to defined “properties” as well
as define additional “artifacts” and “operations” as
long as they are comply with TOSCA’s normative
lifecycle interface. TOSCA Light supports the use
of TOSCA’s normative “requirements” and “capabil-
ities” to establish relationships or define additional
properties. However, the definition of open require-
ments (e.g., node_filter) is not supported.

4 END-TO-END TOOLCHAIN

In this section, we elaborate on the end-to-end mod-
eling and transformation workflow using TOSCA
Light. The overall process comprises four steps as
shown in Fig. 2 and starts with the creation of an
EDMM-compliant TOSCA Light deployment model.

4.1 Create Deployment Model

An application component architecture is specified
using the TOSCA CML to produce deployment model.

Workflow. The overall modeling workflow, essen-
tially, does not differ from the common process.
A given application’s component architecture is de-
scribed declaratively using TOSCA constructs either
using a graphical modeling tool or a text editor.
The resulting set of modeling artifacts comprises the
TOSCA-based definitions describing types and com-
ponent instances as well as the file artifacts required
for deploying the application, e. g., container images.
Tooling. The deployment model can be specified us-
ing multiple possible tools, including graphical mod-
eling tools such as Eclipse Winery (Kopp et al., 2013)
or Alien4Cloud (ALIEN 4 Cloud, 2020). Another
possible option is to use text-based editors such as Vi-
sual Studio Code offered by Microsoft.

4.2 Validate TOSCA Light Compliance

The produced TOSCA-based deployment model is
analyzed to ensure its compliance to the TOSCA
Light modeling profile and, hence, to EDMM.

Workflow. As a next step, the resulting TOSCA-
based deployment model is validated for EDMM
compliance. To achieve this, the given model is
checked against the set of modeling requirements dis-
cussed in-detail in Sect. 3. In case the model is
EDMM-compliant it is labeled as TOSCA Light and
can be used as an input for transforming the model
into the desired target deployment format such as Ter-
raform or Kubernetes. In situations when the model
is not compatible with the TOSCA Light modeling
profile, the model can be refined according to the pro-
vided modification recommendations.
Tooling. Essentially, the validation of the model can
be performed either at design time using graphical
modeling tools or text editors, or at transformation
time using transformation tools. In case of the for-
mer, corresponding TOSCA Light compliance plug-
ins have to be introduced. Further, tools like Eclipse

Create
Deployment

Model

1

Validate
TOSCA Light
Compliance

2

Execute
Deployment

4

Transform
Deployment

Model

3

TOSCA TOSCA DTSM

Figure 2: TOSCA Light end-to-end toolchain.

Winery could also provide a TOSCA Light compli-
ance check while importing existing TOSCA applica-
tions or by providing mechanisms to verify a given
TOSCA repository regarding compliance.

4.3 Transform Deployment Model

The successfully validated TOSCA Light model is
transformed into the target deployment technology.

Workflow. Afterwards, the successfully validated
TOSCA Light model is used as an input for the
transformation engine to produce a deployment
technology-specific model (DTSM). Consequently,
another input required for the transformation engine
is the name of the target deployment automation tool,
e. g., Ansible or Terraform. As discussed previously,
the possibility to transform the model is guaranteed
by design since the used modeling constructs conform
to the essential entities defined by EDMM.
Tooling. The EDMM Transformation Framework is
used to generate the DTSM (Wurster et al., 2019a).
To achieve this, a given TOSCA Light model’s con-
structs are mapped to the corresponding entities in the
target tool’s constructs space. It is worth mentioning,
that the generated target model might be refined with,
e. g., security credentials or other configuration infor-
mation in the form variables that are relevant only for
the target deployment automation technology.

4.4 Execute Deployment

The transformed technology-specific deployment
model is executed using the standard mechanisms
provided by the target deployment automation tool.

Workflow. Finally, after the generated target deploy-
ment model is ready to be deployed, it can be used as
an input for the target deployment automation tech-
nology. Hence, the actual deployment happens using

the standard tool’s mechanisms, which also simplifies
further management of the application.
Tooling. Since the deployment happens using the
standard tool-specific deployment mechanisms, the
actual tooling that needs to be used depends on the
concrete use case, i. e., which target deployment tech-
nology was used. This also influences the way the tool
has to be used, i. e., where it can be hosted or who op-
erates it. For example, the interaction will be different
for as-a-service solutions such as AWS CloudForma-
tion and self-hosted tools such as Ansible.

5 PROOF-OF-CONCEPT
IMPLEMENTATION

In this section, we illustrate a proof-of-concept (PoC)
implementation based on (i) Eclipse Winery (Kopp
et al., 2013) and (ii) the EDMM Transformation
Framework1 (Wurster et al., 2019a) to validate the
feasibility of the proposed TOSCA Light end-to-end
toolchain. Next, we briefly explain the extensions, the
usage of the tools, and how they map to the proposed
end-to-end toolchain in Sect. 4.

Eclipse Winery is a web-based environment to
graphically model TOSCA-based application topolo-
gies. It provides a Management Interface to manage
all TOSCA related entities, such as node types, their
property definitions, operations, and artifacts. Fur-
ther, Winery provides a Topology Modeler component
which enables the graphical composition of the de-
sired target state of application to be deployed. For
this PoC, Winery has been extended by the TOSCA
Light Mode and is used to define and develop the de-
ployment model graphically in accordance to step 1 in
Fig. 2. We created a fork of Eclipse Winery and pub-
lished our extension to GitHub2 respectively. The cur-
rent implementation checks the TOSCA Light com-

1https://bit.ly/2WzlicC
2https://bit.ly/2xg4hK0

https://bit.ly/2WzlicC
https://bit.ly/2xg4hK0

pliance when a user opens a TOSCA service template,
which implements step 2 of the proposed TOSCA
Light toolchain (cf. Fig. 2). Each created or imported
TOSCA model may be flagged as TOSCA Light com-
pliant by showing a TOSCA Light logo in Winery’s
header component. Further, Winery is able to provide
a list of violated conditions when a TOSCA service
template is not compliant with TOSCA Light.

In terms of transformation (cf. step 3 in Fig. 2), we
exploit the existing EDMM export functionality by
Eclipse Winery, as TOSCA Light is fully compliant
to EDMM. The exported EDMM model can then di-
rectly be processed by the the EDMM Transformation
Framework (Wurster et al., 2019a), either by using the
provided CLI or the REST interface over HTTP. To-
gether with the EDMM model, a user can select a cer-
tain target deployment technology and the framework
generates the respective files and templates. Finally,
and according to step 4 (cf. Fig. 2), the output can be
executed using the target technology’s tooling.

6 RELATED WORK

The OASIS standard TOSCA constitutes a refer-
ence metamodel for specifying the topology and
orchestration of multi-component cloud applica-
tions (Bergmayr et al., 2018). At the same time, most
existing cloud deployment automation technologies
are not offering a native support to TOSCA, which
makes it complex to deploy and manage TOSCA-
based application in production-ready environments.

Currently existing efforts for enacting the de-
ployment of TOSCA-based applications can be clus-
tered in three main categories (Bellendorf and Mann,
2019). We can indeed distinguish (i) solutions for
directly deploying TOSCA application specifications
in cloud infrastructure, (ii) approaches integrating
TOSCA with other standards for enhancing deploy-
ment automation, and (iii) solutions for enabling the
deployment of TOSCA-based applications on existing
deployment technologies.
The reference approach for directly deploying
TOSCA-based cloud application is the OpenTOSCA
engine proposed by Binz et al. (2013), recently ex-
tended to also support the deployment of applications
also in IoT environments (da Silva et al., 2016). The
OpenTOSCA engine enables the orchestration of the
deployment and management of TOSCA-based appli-
cations on a target infrastructure, by obviously requir-
ing to get installed in the manager of such infrastruc-
ture and of being provided with the TOSCA specifica-
tions of to-be-orchestrated applications. It is however
intended to be itself the orchestrator of the applica-

tion, and it currently does not support streamlining
the deployment and management of an application to
other existing deployment technologies (e. g., Kuber-
netes or Terraform), which are currently more used in
production-ready environments (Pahl et al., 2019).

Similar considerations apply to other existing
approaches enabling the deployment and manage-
ment of TOSCA-based application on target in-
frastructures, e. g., the DevOps-based streamlining
proposed by Wettinger et al. (2014, 2015), the
TOSCA support provided by Cloudify (Cloudify Plat-
form Ltd., 2020), the open-source initiatives Ari-
aTOSCA (Apache Software Foundation, 2018) and
Alien4Cloud (ALIEN 4 Cloud, 2020), and the multi-
cloud orchestration enacted by SeaClouds (Brogi
et al., 2016). All such approaches rely on the avail-
ability of full-fledged TOSCA-compliant orchestra-
tors, while our objective is to identify the subset of
TOSCA enabling the specification multi-component
applications that can then be processed by most used
production-ready cloud deployment automation tech-
nologies. We enable this by identifying the subset of
TOSCA that is compliant with the EDMM proposed
by Wurster et al. (2019b), and by providing the tool-
ing needed to enact the translation of TOSCA Light
application specifications on all cloud deployment
automation technologies supported by the EDMM
Transformation Framework (Wurster et al., 2019a).

Other approaches worth relating to ours are those in-
tegrating TOSCA with other standards for enhancing
deployment automation. Noteworthy efforts in this
direction are those by Calcaterra et al. (2017, 2018a)
and by Kopp et al. (2012), both working on the inte-
gration of BPMN with TOSCA to imperatively pro-
gram and automate the deployment and management
of multi-cloud application. Calcaterra et al. (2017,
2018a) propose a solution to automatically generate
BPMN workflows for deploying and managing multi-
component applications, starting from their TOSCA
specification. They also provide an extension of their
approach, which allows to deal with potential failures
while actually enacting the generated BPMN work-
flows (Calcaterra et al., 2018b). Kopp et al. (2012)
instead proposes a BPMN profile for enabling the im-
perative programming of the deployment and man-
agement of multi-component applications specified in
TOSCA. Hence, even if different in the spirit, both the
approaches by Calcaterra et al. (2017, 2018a) and by
Kopp et al. (2012) enable automating the deployment
and management of TOSCA applications by relying
on the availability of a BPMN engine.

Cardoso et al. (2013) and Glaser. et al. (2017)
are worth mentioning efforts integrating TOSCA with
other standards for enhancing deployment automa-

tion. Cardoso et al. (2013) propose to integrate
TOSCA with the service description language USDL,
by exploiting the latter to define the functionalities of
cloud services, and by providing a prototypical plat-
form integrating service selection with deployment.
Glaser. et al. (2017) instead provide analyze the
analogies and possible integration between TOSCA
and OCCI (Open Grid Forum, 2016). They then pro-
pose a fully-automated model-driven cloud applica-
tion orchestrator based on the two standards.

However, the approaches by Calcaterra et al.
(2017, 2018a), Kopp et al. (2012), Cardoso et al.
(2013), and Bergmayr et al. (2016) all aim at tack-
ling objectives quite different from ours. They suc-
ceed in enabling the deployment and management
of TOSCA-based applications based on the integra-
tion of TOSCA with existing standards, but they are
not supporting the possibility of enacting the deploy-
ment of TOSCA-based applications using production-
ready deployment automation technologies.

Last, but probably the most related to our approach,
are the solutions enabling the deployment of TOSCA-
based applications on existing cloud deployment au-
tomation technologies. Breiter et al. (2014) illus-
trate how to deploy multi-component applications
specified in TOSCA on the IBM cloud comput-
ing infrastructure. Brogi et al. (2018b,a) propose a
TOSCA profile for specifying container-based multi-
component application, by also providing the TosKer
engine for actually enacting their deployment and
management of such application on Docker-enabled
infrastructures. Carrasco et al. (2016); Carrasco et al.
(2018) enable trans-cloud application deployment, by
allowing to run TOSCA application specifications on
top of Apache Brooklyn (Apache Software Founda-
tion, 2020). However, all such efforts target a pre-
cise infrastructure or a precise cloud deployment au-
tomation technology. We instead aim at enabling the
deployment of TOSCA applications with most used
production-ready deployment technologies.

Similar considerations apply to the noteworthy ef-
forts by Katsaros et al. (2014) and Tricomi et al.
(2017). Both proposing different approaches for en-
abling the deployment of multi-component applica-
tions specified in TOSCA on OpenStack cloud infras-
tructures. Gusev et al. (2014) and Ivanovska et al.
(2015) goes even a step further by proposing the P-
TOSCA environment, which enables multi-cloud de-
ployment and management of TOSCA-based applica-
tions on both Eucalyptus and OpenStack.

In summary, to the best of our knowledge, all existing
approaches for enabling the deployment of TOSCA
application focus on supporting the full expressive-
ness of TOSCA, either by requiring to process ap-

plication specifications with TOSCA-compliant en-
gines or by requiring to run them with some specific
third-party orchestrator. Our aim is instead to identify
the subset of TOSCA (i. e., the TOSCA Light pro-
file) that can be processed by any production-ready
cloud deployment automation technology, to give ap-
plication administrators the freedom of choosing the
technology most suited to their needs. We indeed
identify the subset of TOSCA that is compliant with
the EDMM metamodel, which is known to distill the
essentials of cloud deployment automation technolo-
gies (Wurster et al., 2019b). Further, we provide all
tooling needed to actually translate TOSCA Light ap-
plication specifications into deployment technology-
specific models (DTSM) allowing to enact their de-
ployment and management on production-ready de-
ployment automation technologies, i. e., those cur-
rently supported by the EDMM Modeling and Trans-
formation Framework (Wurster et al., 2019a).

7 CONCLUSIONS

TOSCA as a standardized cloud modeling language
is indeed widely used in research. However, in
industry, concrete deployment automation technolo-
gies are much more common as they often provide
comprehensive tooling and support for integration in
modern software development and operations pro-
cesses. To close this gap, we identified and intro-
duced the TOSCA Light modeling profile, a set of
EDMM compatibility rules resulting in a reduced
set of TOSCA modeling constructs, and described
the TOSCA Light end-to-end toolchain. Further, we
presented a PoC implementation of the end-to-end
toolchain by extending Eclipse Winery to interac-
tively check TOSCA applications for TOSCA Light
compliance. By leveraging EDMM and its transfor-
mation capabilities, we enact to translate TOSCA-
based application deployment models into concrete
deployment technology-specific models used by pop-
ular deployment automation technologies.

For immediate future work, we plan to fully im-
plement and evaluate the proposed TOSCA Light
toolchain. The modeling complexity as well as the
engineered prototype will be evaluated using a real-
world industrial scenario. We plan to show a detailed
study on how TOSCA Light can simplify the manage-
ment of applications running on Kubernetes.

Beside of that, we plan to investigate the re-
lation of EDMM to other cloud modeling lan-
guages (Bergmayr et al., 2018), such as CAMEL
or CloudML, to enact the translation based on the
EDMM Transformation Framework.

ACKNOWLEDGMENTS

This work is partially funded by the EU project
RADON (825040), the German Research Founda-
tion (DFG) project SustainLife (379522012), and the
projects AMaCA (POR-FSE) and DECLware (Uni-
versity of Pisa, PRA_2018_66).

REFERENCES

ALIEN 4 Cloud (2020). ALIEN 4 Cloud. Version 3,
https://alien4cloud.github.io.

Apache Software Foundation (2018). AriaTOSCA. Incuba-
tor, https://ariatosca.incubator.apache.org.

Apache Software Foundation (2020). Apache Brooklyn.
Version 1, https://brooklyn.apache.org.

Bellendorf, J. and Mann, Z. A. (2019). Specification of
cloud topologies and orchestration using TOSCA: A
survey. Computing.

Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A.,
Solberg, A., Wimmer, M., Kappel, G., and Leymann,
F. (2018). A Systematic Review of Cloud Modeling
Languages. ACM Comput. Surv., 51(1).

Bergmayr, A., Breitenbücher, U., Kopp, O., Wimmer, M.,
Kappel, G., and Leymann, F. (2016). From Archi-
tecture Modeling to Application Provisioning for the
Cloud by Combining UML and TOSCA. In Proceed-
ings of the 6th International Conference on Cloud
Computing and Services Science - Volume 1 and 2,
CLOSER 2016, page 97–108. SciTePress.

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Ley-
mann, F., Nowak, A., and Wagner, S. (2013). Open-
TOSCA — A Runtime for TOSCA-Based Cloud Ap-
plications. In Proceedings of the 11th International
Conference on Service-Oriented Computing - Volume
8274, ICSOC 2013, page 692–695, Berlin, Heidel-
berg. Springer-Verlag.

Binz, T., Breiter, G., Leymann, F., and Spatzier, T. (2012).
Portable Cloud Services Using TOSCA. IEEE Inter-
net Computing, 16(03):80–85.

Breiter, G., Behrendt, M., Gupta, M., Moser, S. D., Schulze,
R., Sippli, I., and Spatzier, T. (2014). Software de-
fined environments based on TOSCA in IBM cloud
implementations. IBM Journal of Research and De-
velopment, 58(2/3):9:1–9:10.

Brogi, A., Carrasco, J., Cubo, J., D’Andria, F., Di Nitto, E.,
Guerriero, M., Pérez, D., Pimentel, E., and Soldani,
J. (2016). SeaClouds: An Open Reference Architec-
ture for Multi-cloud Governance. In Tekinerdogan, B.,
Zdun, U., and Babar, A., editors, Software Architec-
ture, volume 9839 of LNCS, pages 334–338. Springer
International Publishing.

Brogi, A., Neri, D., Rinaldi, L., and Soldani, J.
(2018a). Orchestrating incomplete TOSCA applica-
tions with Docker. Science of Computer Program-
ming, 166:194–213.

Brogi, A., Rinaldi, L., and Soldani, J. (2018b). TosKer: A
Synergy Between TOSCA and Docker for Orchestrat-
ing Multicomponent Applications. Software: Practice
and Experience, 48(11):2061–2079.

Calcaterra, D., Cartelli, V., Di Modica, G., and Tomar-
chio, O. (2017). Combining TOSCA and BPMN to
Enable Automated Cloud Service Provisioning. In
Proceedings of the 7th International Conference on
Cloud Computing and Services Science, CLOSER
2017, page 187–196. SciTePress.

Calcaterra, D., Cartelli, V., Di Modica, G., and Tomarchio,
O. (2018a). A Framework for the Orchestration and
Provision of Cloud Services Based on TOSCA and
BPMN. In Ferguson, D., Muñoz, V. M., Cardoso, J.,
Helfert, M., and Pahl, C., editors, Cloud Computing
and Service Science, pages 262–285, Cham. Springer
International Publishing.

Calcaterra, D., Cartelli, V., Modica, G. D., and Tomarchio,
O. (2018b). Exploiting BPMN Features to Design a
Fault-aware TOSCA Orchestrator. In Proceedings of
the 8th International Conference on Cloud Computing
and Services Science - Volume 1: CLOSER,, pages
533–540. SciTePress.

Cardoso, J., Binz, T., Breitenbücher, U., Kopp, O., and Ley-
mann, F. (2013). Cloud Computing Automation: In-
tegrating USDL and TOSCA. In Salinesi, C., Nor-
rie, M. C., and Pastor, Ó., editors, Advanced Infor-
mation Systems Engineering, pages 1–16. Springer
Berlin Heidelberg.

Carrasco, J., Cubo, J., Durán, F., and Pimentel, E.
(2016). Bidimensional Cross-Cloud Management
with TOSCA and Brooklyn. In 2016 IEEE 9th Inter-
national Conference on Cloud Computing (CLOUD),
pages 951–955.

Carrasco, J., Durán, F., and Pimentel, E. (2018). Trans-
cloud: CAMP/TOSCA-based bidimensional cross-
cloud. Computer Standards & Interfaces, 58:167 –
179.

Cloudify Platform Ltd. (2020). TOSCA Orchestration &
Training. https://cloudify.co/tosca.

da Silva, A. C. F., Breitenbücher, U., Képes, K., Kopp, O.,
and Leymann, F. (2016). OpenTOSCA for IoT: Au-
tomating the Deployment of IoT Applications Based
on the Mosquitto Message Broker. In Proceedings
of the 6th International Conference on the Internet of
Things, page 181–182. ACM.

Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O.,
Leymann, F., and Wettinger, J. (2017). Declarative vs.
Imperative: Two Modeling Patterns for the Automated
Deployment of Applications. In Proceedings of the 9th

International Conference on Pervasive Patterns and
Applications (PATTERNS), pages 22–27. Xpert Pub-
lishing Services.

Glaser., F., Erbel., J., and Grabowski., J. (2017). Model
Driven Cloud Orchestration by Combining TOSCA
and OCCI. In Proceedings of the 7th International
Conference on Cloud Computing and Services Science
- Volume 1: CLOSER,, pages 672–678. SciTePress.

Gusev, M., Kostoska, M., and Ristov, S. (2014). Cloud P-
TOSCA porting of N-tier applications. In 2014 22nd

https://alien4cloud.github.io
https://ariatosca.incubator.apache.org
https://brooklyn.apache.org
https://cloudify.co/tosca

Telecommunications Forum Telfor (TELFOR), pages
935–938.

Humble, J. and Molesky, J. (2011). Why enterprises must
adopt devops to enable continuous delivery. Cutter IT
Journal, 24(8):6.

Ivanovska, B., Ristov, S., Kostoska, M., and Gusev, M.
(2015). Using the P-TOSCA model for energy effi-
cient cloud. In 2015 38th International Convention
on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), pages 245–
249.

Katsaros, G., Menzel, M., Lenk, A., Revelant, J. R., Skipp,
R., and Eberhardt, J. (2014). Cloud Application Porta-
bility with TOSCA, Chef and Openstack. In 2014
IEEE International Conference on Cloud Engineer-
ing, pages 295–302.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F.
(2012). BPMN4TOSCA: A Domain-Specific Lan-
guage to Model Management Plans for Composite
Applications. In Mendling, J. and Weidlich, M., ed-
itors, Business Process Model and Notation, volume
125 of Lecture Notes in Business Information Process-
ing, pages 38–52. Springer Berlin Heidelberg.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann,
F. (2013). Winery – a modeling tool for tosca-
based cloud applications. In International Confer-
ence on Service-Oriented Computing, pages 700–704.
Springer.

OASIS (2019). TOSCA Simple Profile in YAML Version
1.3.

Open Grid Forum (2016). Open Cloud Computing Interface
(OCCI). https://occi-wg.org.

Pahl, C., Brogi, A., Soldani, J., and Jamshidi, P. (2019).
Cloud Container Technologies: A State-of-the-Art
Review. IEEE Transactions on Cloud Computing,
7(3):677–692.

Tricomi, G., Panarello, A., Merlino, G., Longo, F., Bru-
neo, D., and Puliafito, A. (2017). Orchestrated Multi-
Cloud Application Deployment in OpenStack with
TOSCA. In 2017 IEEE International Conference on
Smart Computing (SMARTCOMP), pages 1–6.

Weerasiri, D., Barukh, M. C., Benatallah, B., Sheng, Q. Z.,
and Ranjan, R. (2017). A Taxonomy and Survey
of Cloud Resource Orchestration Techniques. ACM
Computer Surveys, 50(2).

Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., and
Leymann, F. (2015). Streamlining Cloud Manage-
ment Automation by Unifying the Invocation of Scripts
and Services Based on TOSCA, pages 2240–2261. IGI
Global.

Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Ley-
mann, F., and Zimmermann, M. (2014). Unified Invo-
cation of Scripts and Services for Provisioning, De-
ployment, and Management of Cloud Applications
Based on TOSCA. In Proceedings of the 4th Interna-
tional Conference on Cloud Computing and Service
Science, CLOSER 2014, 3-5 April 2014, Barcelona,
Spain, pages 559–568. SciTePress.

Wurster, M., Breitenbücher, U., Brogi, A., Falazi, G.,
Harzenetter, L., Leymann, F., Soldani, J., and Yus-

supov, V. (2019a). The EDMM Modeling and Trans-
formation System. In Service-Oriented Computing –
ICSOC 2019 Workshops. Springer.

Wurster, M., Breitenbücher, U., Falkenthal, M., Krieger, C.,
Leymann, F., Saatkamp, K., and Soldani, J. (2019b).
The Essential Deployment Metamodel: A System-
atic Review of Deployment Automation Technolo-
gies. SICS Software-Intensive Cyber-Physical Sys-
tems.

Yussupov, V., Falazi, G., Falkenthal, M., and Leymann, F.
(2019). Protecting Deployment Models in Collabo-
rative Cloud Application Development. International
Journal On Advances in Security, pages 79–94.

https://occi-wg.org

