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ABSTRACT
Serverless computing focuses on developing cloud applications that
comprise components fully managed by providers. Function-as-
a-Service (FaaS) service model is often associated with the term
serverless as it allows developing entire applications by compos-
ing provider-managed, event-driven code snippets. However, such
reduced control over the infrastructure and tight-coupling with
provider’s services amplify the various lock-in problems. In this
work, we explore the challenges of migrating serverless, FaaS-based
applications across cloud providers. To achieve this, we conduct an
experiment in which we implement four prevalent yet intentionally
simple serverless use cases and manually migrate them across three
popular commercial cloud providers. The results show that even
when migrating simple use cases, developers encounter multiple
aspects of a lock-in problem. Moreover, we present a categorization
of the problems and discuss the feasibility of possible solutions.

CCS CONCEPTS
• Software and its engineering → Cloud computing; • Ap-
plied computing→ Event-driven architectures.

KEYWORDS
Serverless; Function-as-a-Service; FaaS; Portability; Migration

ACM Reference Format:
Vladimir Yussupov, Uwe Breitenbücher, Frank Leymann, and Christian
Müller. 2019. Facing the Unplanned Migration of Serverless Applications:
A Study on Portability Problems, Solutions, and Dead Ends. In Proceedings of
the IEEE/ACM 12th International Conference on Utility and Cloud Computing
(UCC ’19), December 2–5, 2019, Auckland, New Zealand. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3344341.3368813

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UCC ’19, December 2–5, 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6894-0/19/12. . . $15.00
https://doi.org/10.1145/3344341.3368813

1 INTRODUCTION
Cloud computing [20] becomes a necessity for businesses at any
scale. The key benefits motivating its widespread adoption are elas-
ticity, reduced maintenance efforts, and optimized costs [18]. Tradi-
tional cloud service models provide different levels of control over
the underlying resources, from more flexible to more restricted, e.g.,
where only the underlying platform can be controlled. Such a broad
spectrum of service models facilitates choosing which management
responsibilities are eventually delegated to providers.

Serverless computing paradigm [5, 12] focuses on development
of applications comprising provider-managed components. Hence
the term serverless is misleading as it gives a wrong impression that
servers are absent, while in reality they are only abstracted away.
Function-as-a-Service (FaaS) offerings such as AWS Lambda [1]
are often called serverless, since developers are able to deploy arbi-
trary, event-driven code snippets managed completely by providers,
e.g., functions are automatically scaled if necessary; also including
scaling idle instances to zero. However, these benefits come with
a price: the reduced infrastructure control and, hence, the tighter-
coupling with provider-specific internal mechanisms amplify the
lock-in. Combining FaaS-based components with provider services
introduces evenmore portability risks, e.g., identification of suitable
service alternatives, adaptation of the configuration and business
logic. Hence, migrating a serverless, FaaS-based application requires
considerable efforts and appropriate technical expertise.

In this work, we investigate challenges encountered when mi-
grating serverless, FaaS-based applications not built with portability
in mind. To achieve this, we conducted an experiment in which we
implement and manually migrate four prevalent serverless, FaaS-
based use case applications across three well-known commercial
cloud providers. The applications are intentionally simplified, to
show that even the migration of simple serverless use cases faces
multiple aspects of lock-in problem and to ease experiment’s repro-
ducibility. To achieve this, we (i) designed and implemented four
typical serverless use cases for a baseline implementation provider
and migrated them manually to two target providers. To report
on our findings, we (ii) conduct a detailed analysis of arising prob-
lems and present a categorization of different lock-in types we faced.
Moreover, we (iii) describe for all categories of encountered lock-ins
possible solutions and report which problems result in a dead-end,
meaning there is no acceptable cloud-native solution for this issue.
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2 BACKGROUND
In this section, we describe the important fundamentals including
serverless computing, FaaS, function orchestration and vendor lock-
in. Furthermore, we discuss the motivation behind this work and
outline the design of the conducted experiment.

2.1 Serverless and Function-as-a-Service
The overall intention behind the concept of serverless computing is
to completely abstract away servers from software developers [12].
While actual servers still remain present, the duty of managing
aspects such as provisioning and scaling resources is lifted away
from the developer and done by the cloud provider instead. As
a result, developers are able to focus solely on implementing the
applications. Function-as-a-Service (FaaS) fits nicely into the world
of serverless. In FaaS, applications are composed of multiple, short-
lived and, typically, stateless functions that are triggered based
on specific events, e.g, a database insert operation or whenever a
message is published to a queue’s topic. Among the main benefits
of this service model are auto-scaling guaranteed by the provider
and an optimized cost model, where instead of paying for idle times
cloud providers only charge tenants for the time functions have
actually been executed [5, 11, 12]. This means that idle instances
are scaled to zero, which is not the case, e.g., for PaaS offerings.
However, FaaS also comes with drawbacks, such as the so-called
cold start problem or limited function execution time [16].

The lack of long-running tasks support in FaaS [16] is a major
drawback, especially for more complex use cases. One potential
solution to this problem is the decomposition of a large function
into a chain of smaller functions modeled as a workflow that can be
orchestrated by a function orchestrator [14], e.g., Microsoft Azure
Durable Functions [21]. The main task of a function orchestrator
is to execute workflows based on FaaS-hosted functions. While
function orchestrator feature sets differ among cloud providers, the
majority supports control flow structures like chaining, branching,
and parallel execution of functions, which facilitate modeling of
long-running tasks and make FaaS offerings more powerful.

2.2 Lock-in Problem
The inevitability of locking into requirements and features of a spe-
cific product is a well-known problem which can be encountered
in multiple different migration contexts, e.g., switching between
various competing mainframe vendors [15] or cloud computing of-
ferings [8, 25, 27]. In the cloud, the lock-in is a common problem that
complicates the migration of cloud applications from one provider
to another [25]. Basically, every provider-specific offering comes
with varying sets of features and requirements which have to be
fulfilled to actually start using it. This includes specific data formats,
remote APIs, or even custom configuration DSLs and programming
languages [25]. As a result, by choosing a specific provider, cloud
users become tightly-coupled with the corresponding services and
features, which makes it significantly harder costs- and efforts-wise
to switch cloud providers in cases when it is needed, e.g., organiza-
tional restructuring or costs optimization [25, 30]. Moreover, cloud
applications are typically not built with portability in mind [25], and
by choosing the cloud provider, applications become (un-)willingly
restricted to the features of chosen provider.

2.3 Why Porting Serverless Applications?
The issues of portability and interoperability of applications in the
cloud are well-known, with multiple papers describing why moving
applications across clouds is important and beneficial and proposing
ways to simplify this process [10, 26, 30]. Basically, there are nu-
merous potential reasons to switch provider for already deployed
applications including optimization of resources utilization and
costs, depreciation of the service quality or provider’s bankruptcy,
changes of technology, terminated contracts, or legal issues [26].
While the lock-in problem is not novel, the fast pace of cloud service
models’ evolution and constantly-increasing number of provider-
specific services makes it harder to understand which issues to
expect when porting applications across clouds. With serverless
and FaaS this problem is further exacerbated, since all application
components are intended to be provider-managed, which results
even in a stronger degree of lock-in. For example, the event-driven
nature of FaaS imposes additional requirements on the way func-
tions have to be developed and configured, e.g., which events can
trigger them, how to establish bindings between event sources and
actual functions, etc. Moreover, function orchestration engines that
allow composing FaaS-hosted functions often work differently and
support different sets of features, which further complicates migrat-
ing serverless applications. In addition, established services, e.g.,
databases, used as serverless components have similar problems
discussed in multiple research publications [8, 22].

3 EXPERIMENT DESIGN
In this work, we explore and categorize the different dimensions
of the lock-in problem for serverless applications and answer the
following research question: “Which technical challenges are com-
monly encountered when migrating serverless, FaaS-based applica-
tions that are not built with portability in mind across commercial
cloud providers?” To answer this question, we design and conduct
an experiment comprising these steps: (i) select four common and
intentionally-simple serverless, FaaS-based use cases, (ii) choose a
baseline implementation provider, (iii) manually migrate the base-
line implementations to another two commercial providers, (iv) an-
alyze and categorize different lock-in types, possible solutions and
dead ends. When designing the use cases, we favored two decisions:
maximize components’ heterogeneity and keep the implementa-
tions simple. Themain reason for choosing components to be simple
is to demonstrate that even such simplified use cases introduce mul-
tiple portability issues. To select four use cases, we first analyzed
existing academic and gray literature [5, 11–13, 16] and identified
commonly-described use cases such as event processing and API
composition. It is important to note that we did not intend to gather
a complete set of possible use cases, but rather a representative set
which will allow us to design uncomplicated yet heterogeneous
serverless, FaaS-based applications. Moreover, to emulate the real
world scenarios requiring an unplanned migration, these use cases
are implemented without optimizing them for portability and inter-
operability. The final list of use cases includes: one simple and one
more advanced event processing application, serverlesss API, and
a function workflow. We elaborate on the use cases in Section 4.
For the baseline implementation we use AWS, and the two other
providers are Microsoft Azure and IBM Cloud.



4 USE CASES
In this section, we describe the chosen use cases typically associated
with the serverless and FaaS [5, 11], which we use in the migration
experiment as described in Section 3. The components which consti-
tute the use cases are chosen to be heterogeneous to cover different
event trigger types such as relational andNoSQL databases, message
queues, and API Gateways. Moreover, as function orchestration be-
comes an important part of FaaS [6, 14], we include the matrix mul-
tiplication use case implemented by means of function workflows.
The chosen set of use cases is not planned to be complete, and rep-
resents typical yet heterogeneous serverless, FaaS-based scenarios.

4.1 Thumbnail Generation
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Figure 1. The components of a thumbnail generation application

The first use case shown in Figure 1 is a straightforward and
most frequently-described example of an event-driven FaaS-based
application: thumbnail generation. In this common use case, when-
ever a user uploads an image to a bucket in an object storage, the
FaaS-hosted function is triggered to generate a thumbnail of this
image and store it in a separate bucket. In addition, for facilitating
the image uploading process, a separate function is responsible for
uploading an image to a designated bucket.

4.2 Serverless API
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Figure 2. A serverless API of a ToDo Application

Another common use cases involving FaaS API composition
and aggregation [5]. Essentially, the idea is to expose FaaS-hosted
functions representing, e.g., a composition of several API calls, via
an API Gateway as a single of point communication with clients.
For the sake of simplicity, we implement a ToDo list application
that allows creating and maintaining the list of to-be-done tasks
persisted in a NoSQL database. The structure of the application is
shown in Figure 2. Here, we focus not on the complexity of the
functions, but on their integration with the API gateway and the
storage service, i.e., a NoSQL database in this example.

4.3 Event Processing
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Figure 3. A messaging-based event processing application

The third use case depicted in Figure 3 is a more complex server-
less and event-driven FaaS-based application motivated by IoT
scenarios, where the data obtained from multiple sensors have to
be aggregated for further processing. Typically, message queues
and streaming platforms play an important role in such scenarios.
The overall data flow of this application is as follows: Firstly, events
emitted by various sources are processed by a function exposed
via an API Gateway. Then, a publish-subscribe channel is used to
normalize various event formats using corresponding normalizer
functions. Afterwards, the normalized events are passed to a func-
tion that persists events to a RDBMS by means of a point-to-point
message queue channel. Different types of channels are used to
enable more possible provider-specific service combinations, e.g.,
AWS SNS for pub-sub and AWS SQS for a point-to-point channel.

4.4 Function orchestration
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Figure 4. Matrix multiplication using function orchestration in BPMN

Typically, function orchestrators are available as standalone ser-
vices that are offered to complement FaaS offerings, e.g., AWS Step
Functions or Microsoft Azure Durable Functions. Function orches-
trators allow defining function-based workflows, often in custom
DSLs, that are highly convenient in more complex serverless appli-
cation scenarios [6, 14]. For an orchestration use case, we model a
matrix multiplication using a simple function workflow as specified
in the BPMN [24] diagram depicted in Figure 4. The modeled work-
flow comprises exclusive and parallel gateways to perform matrix
multiplication in parallel only for cases when matrices dimension-
ality is larger than ten. This condition is introduced to increase the
number of distinct control flow constructs, which allows analyzing
the aspects of orchestrators’ workflow portability in more detail.



5 MIGRATING THE USE CASES
In this section, we elaborate on the implementation and migration
of our intentionally-simple use case applications described in Sec-
tion 4. We first discuss the baseline implementation in Amazon
Web Services (AWS) for each of the use case applications. To emu-
late real world scenarios, we implement the use cases in different
programming languages without optimizing them for portability
and interoperability. Afterwards, we show how these baseline im-
plementations are migrated to the chosen target providers, namely
Microsoft Azure and IBM Cloud. For every use case we first provide
descriptions of technical details for each target provider followed
by a summary table with modifications needed for migrating the
baseline implementation to each target provider. In every case, the
changes and adaptation of function and configuration code was
necessary. When describing the implementation details, we omit
dry technical information such as the number of lines of code, and
focus rather on important migration aspects and challenges. The
source code of all implementations is publicly available on GitHub1.

5.1 Thumbnail Generation
As described in Section 4, creating thumbnails using FaaS is a sim-
ple event-driven application that typically relies on FaaS-hosted
thumbnail-generating function triggered by certain database events,
e.g., emitted when images are inserted into an object storage. We
describe the technical details related to every provider below.

Implementation for Amazon Web Services. For AWS Lambda
in the thumbnail generation use case we chose Java programming
language and Apache Maven for dependency management. This
use case comprises two functions: one for generating thumbnails
and one for storing an image into the database. For the database
we use AWS S3 object storage service and two buckets for stor-
ing uploaded images and thumbnails separately. The trigger for a
thumbnail generating function is configured for the bucket storing
original, user-uploaded images. A common way to develop Java
functions in AWS Lambda is to implement a Requesthandler inter-
face and define function’s inputs and outputs using generics. In
addition, Java AWS provides a separate Java library2 to work with
S3 events. The choice of technologies and component types was not
influenced by the decision to make application portable beforehand,
instead, we picked rather a generic set of components, i.e., Java
functions and AWS S3 buckets.

Migrating to Microsoft Azure. To migrate the thumbnail gener-
ation use case to Microsoft Azure, we use Azure Functions FaaS
platform and Azure Blob Storage as an alternative to AWS S3. Azure
Functions allows hosting functions written in Java making it possi-
ble to port the Java code. However, some modifications were needed
due to provider-specific features, e.g., trigger configurations and
handling event payload. For example, in Azure Functions, triggers
are configured by means of Java annotations directly in the source
code, whereas in AWS the triggers are defined externally. In addi-
tion, in AWS S3 events contain references to the actual data, i.e.,
images have to be accessed from the business logic itself, whereas

1 https://github.com/iaas-splab/faas-migration
https://github.com/iaas-splab/faas-migration-go

2 https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-events

Microsoft Azure handles this task transparently resulting in a less
amount of code to be written. Essentially, Azure Blob storage is
similar to AWS S3, with naming being one of the main differences:
while in AWS buckets must have a globally-unique name, in Azure
the name must only be unique withing a storage account. This sim-
plifies blob container naming in Azure as only the storage account
must be globally-unique.

Migrating to IBMCloud. Several interesting issues were encoun-
tered when migrating the thumbnail generation use case to IBM
Cloud. FaaS offering from IBM internally uses Apache Openwhisk,
an open source FaaS platform, which has no limitations in terms of
supported programming languages. As a result, the migration of
Java functions was also possible, however, some modifications were
needed. For example, Openwhisk does not support using custom
objects as function’s inputs and outputs, requiring to process input
and output dictionaries represented as JSON objects in the business
logic. IBM Object storage was used as an alternative to AWS S3.
At the time the use case was implemented, a trigger required for
binding the storage with the function was available only in one
region and considered to be an experimental feature3.

Table 1 shows a high-level overview of which changes were
needed when migrating thumbnail generation application from
AWS to Microsoft Azure and IBM Cloud. Note that the reported
modification requirements are unidirectional, i.e., from baseline
to target provider, and it is not necessarily true that the opposite
direction would have the identical requirements. For example, if the
baseline provider allows developing functions using only a subset
of languages supported by the target provider, modification will
not be needed when porting the application from the baseline to
target provider. Conversely, porting the application from the target
to baseline provider might require changing the language.

Table 1. Summary of changes needed to migrate the thumbnail generation
use case from AWS to Microsoft Azure and IBM Cloud

Modification Microsoft Azure IBM Cloud

Change implementation language1 No No

Adapt function code Yes Yes

Change configurations Yes Yes

Change application’s architecture No No2

1 Use case functions’ code is implemented in Java
2 Implementation relies on the experimental trigger available only in one region

5.2 Serverless API
Employing serverless, FaaS-based API can be attractive in various
scenarios, e.g., composing multiple third-party API calls using a
single FaaS function. To analyze the portability aspects for this
use case, we implement a simplified FaaS-based API of a simple
ToDo application that uses a NoSQL database in the backend as
described in Section 4. As a next step, we provide more details for
every provider in the respective subsections.

3 https://cloud.ibm.com/docs/openwhisk?topic=cloud-functions-
pkg_obstorage#pkg_obstorage_ev_ch



Implementation for AmazonWeb Services. FaaS-hosted func-
tions for this use case are implemented in Go, a statically-typed,
compiled language introduced by Google, which gains popularity
in cloud-native development community. To write functions in Go,
AWS provides an SDK for interacting with AWS services and a
package containing code for function invocation and event struc-
tures. For the NoSQL storage component, we use AWS DynamoDB
database and the functions are exposed via AWS API Gateway. As
mentioned previously, the choice of the programming language
and architecture components was made without an intention to op-
timize the application for portability, but rather to emulate realistic
scenarios in which the choice is defined by the organization require-
ments, team skills, etc. As a result, the fact that Go is not supported
by Azure Functions was unexpected as the AWS implementation
was built without checking other provider beforehand.

Migrating to Microsoft Azure. Unlike other chosen providers,
Microsoft Azure Functions does not support Go, which resulted in
all functions being reimplemented from scratch, in this case in C#.
The development workflow for C# in Azure Functions is similar to
Java, since the configuration of triggers and interaction with the
storage is done directly in the source code using attributes, i.e., C#
analog of Java annotations. As an alternative to AWS DynamoDB
in Azure, we use Azure Table Storage, which suits nicely the given
use case’s requirements. It is worth mentioning that there are other
suitable Azure offerings, e.g., Azure CosmosDB, making the choice
of alternatives flexible, but also more complicated. Finally, API
Management is used to combine Azure HTTP-functions.

Migrating to IBM Cloud. Since Openwhisk, and, therefore, IBM
Cloud Functions platform supports Go, a reimplementation of the
baseline implementations was not needed. Moreover, due to the
nature of function’s inputs and outputs processing in Openwhisk
there is no need to use specific dependencies for implementing func-
tion in Go, making it generally simpler. To mimic AWS DynamoDB,
we use IBM Cloudant database and to simplify communications
with it, functions rely on the Cloudant-specific database driver.
This dependency is substitutable, as IBM Cloudant also provides
an API compliant with Apache CouchDB, which allows using a
CouchDB-specific driver. As an alternative to AWS API Gateway,
an Openwhisk API is created for IBM Cloud Functions manually,
due to the small amount of functions. However, it is also possible
to define an OpenAPI specification, which is helpful, as AWS API
Gateway also allows defining APIs using OpenAPI specification.
Table 2 shows an overview of required modifications.

Table 2. Summary of changes needed to migrate the serverless API use case
from AWS to Microsoft Azure and IBM Cloud

Modification Microsoft Azure IBM Cloud

Change implementation language1 Yes2 No

Adapt function code Yes Yes

Change configurations Yes Yes

Change application’s architecture No No
1 Use case functions’ code is implemented in Go
2 All code had to be reimplemented from scratch, C# was used

5.3 Event Processing
The autoscaling feature of FaaS makes it attractive for data analytics
scenarios. To further explore the portability aspects of event-driven
serverless applications, we implement the application that processes
events collected from different sources as described in Section 4.

Implementation for Amazon Web Services. This use case is
implemented using JavaScript, a de-facto standard for FaaS-based
development. As JavaScript is an interpreted and weakly-typed lan-
guage, writing functions code is typically simpler. Event data can
be accessed by specifying desired attribute names from the event’s
structure. The libraries for interacting with other AWS services
do not need to be included into function packages, since NodeJS
runtime provided by AWS Lambda already has them preinstalled.
For message queue services we use two distinct offerings, namely
AWS SNS and AWS SQS. The former is used for a publish-subscribe
channel of the application, whereas the latter is used for implement-
ing a point-to-point channel. For a relational database component
we use Amazon Aurora with MySQL interface. Event insertion and
database access functions are exposed via AWS API Gateway.

Migrating to Microsoft Azure. Unlike Java and C#, inline defini-
tion of triggers for JavaScript in Azure Functions is not supported.
Instead, triggers have to be defined externally using a separate
JSON file per function. As a suitable alternative for the relational
database component we chose Azure Database for MySQL. The
migration itself was mostly about changing the endpoints and cre-
dentials. Next, AWS SNS and AWS SQS components were ported to
Azure Service Bus, which allows defining both publish-subscribe
and point-to-point channels. Here, two subscriptions per function
for reading from and writing to the pub-sub topic had to be created.

Migrating to IBM Cloud. One issue with IBM Cloud was the
search of suitable alternative for publish-subscribe and point-to-
point messaging services. While allowing to implement point-to-
point channels, themessage queue service IBMMQdoes not provide
a trigger for invoking functions based on the message arrival events.
As a result, this component of the application was moved to a pub-
sub channel, which can be implemented using IBM Event Streams
service. Next, as a substitute for the relational database component
we use IBM Compose for MySQL service, which can be consid-
ered a suitable alternative for AWS Aurora. While development of
JavaScript functions was ordinary, the libraries for publishing to
Kafka used in IBM Event Streams service were required. Table 3
shows an overview of required modifications.

Table 3. Summary of changes needed to migrate the event processing use
case from AWS to Microsoft Azure and IBM Cloud

Modification Microsoft Azure IBM Cloud

Change implementation language1 No No

Adapt function code Yes Yes

Change configurations Yes Yes

Change application’s architecture No Yes2

1 Use case functions’ code is implemented in JavaScript
2 Point-to-point channel had to be replaced with a publish-subscribe channel



5.4 Function Orchestration
The last use case implementation targeted the function orches-
tration application in a form of a workflow that defines matrix
multiplication as described in Section 4. To implement this use
case we used respective orchestration service offerings that allow
defining function workflows for FaaS-hosted functions.

Implementation forAmazonWebServices. To implement func-
tions for the function orchestration use case application we use
C# programming language. The function workflow is defined and
orchestrated using AWS Step Functions service offering. The defini-
tion of a workflow relies on the custom DSL provided by the service.
Since AWS Step Function has a maximum allowed payload size of
around 32000 characters, for multiplication of large matrices, e.g.,
with a dimensionality of several hundreds, we had to implement
a caching mechanism for temporary storage of function’s inputs
and outputs. The execution of the workflow was exposed via API
Gateway, allowing to trigger it using an HTTP call.

Migrating to Microsoft Azure. As a suitable orchestrator alter-
native from Microsoft, we use Azure Durable Functions. Here, the
workflow is defined as code using one of the supported program-
ming languages in a form of an orchestrator function. Unlike AWS
Step Functions, this service does not set limits on the payload size
and also caches large payloads in the background. Hence, the simple
caching implemented for AWS was redundant here. Additionally, a
function which starts the workflow is needed, which, in our case,
was implemented using a standard HTTP-triggered function.

Migrating to IBM Cloud. IBM Composer, the suitable function
orchestration service from IBM, required several modifications to
successfully migrate our use case. Firstly, the workflow definition
had to be rewritten in JavaScript, as IBM Composer only allows
defining function workflows in this programming language. More-
over, IBM Composer also limits the payload size to 5Mb, which
resulted in a need to implement a caching mechanism similar to
AWS Step Functions implementation. Additionally, IBM Database
for Redis service had to be used since IBM Composer dependency
on Redis for caching orchestrations of parallel function executions.

Table 4 shows an overview of modifications required to migrate
the baseline implementation of the function orchestration use case
in AWS Step Functions to Microsoft Azure Durable Functions and
IBM Composer. Of course, the FaaS-hosted functions were devel-
oped for the respective FaaS platforms, i.e., AWS Lambda, Azure
Functions, and IBM Cloud Functions.

Table 4. Summary of changes needed to migrate the function orchestration
use case from AWS to Microsoft Azure and IBM Cloud

Modification Microsoft Azure IBM Cloud

Change implementation language1 No No

Adapt function code Yes Yes

Adapt workflow definition Yes Yes

Change configurations Yes Yes

Change application’s architecture No No
1 Use case functions’ code is implemented in C#

5.5 Application Component Mappings
As can be seen from the aforementioned implementation details,
every provider-specific components needs to be replaced with a
suitable alternative from the target provider’s portfolio. In Table 5
we provide an overview of possible component replacement that
were used for use cases migration. In many cases, the choice of
suitable alternatives is not limited with only one option, e.g., decide
between Azure CosmosDB and Azure Table Storage, and making it
more flexible, but also complicated.

Table 5. Chosen mappings of application components use cases migration

Component Amazon Web
Services

Microsoft
Azure IBM Cloud

Function AWS Lambda Azure Functions IBM Cloud
Functions

Object storage AWS S3 Azure Blob
Storage

IBM Object
Storage

NoSQL
database

AWS
DynamoDB

Azure Table
Storage IBM Cloudant

API Gateway
AWS API
Gateway

API
Management Openwhisk API

Relational
database

Amazon Aurora Azure Database
for MySQL

IBM Compose
for MySQL

Messaging:
pub-sub channel

AWS SNS Azure Service
Bus

IBM Event
Streams

Messaging:
point-to-point
channel

AWS SQS Azure Service
Bus

IBM Event
Streams

Function
orchestrator

AWS Step
Functions

Azure Durable
Functions IBM Composer

6 LOCK-IN CATEGORIES, PROBLEMS,
SOLUTIONS, AND DEAD-ENDS

In this section, we analyze the results of the conducted experiment
as described in previous sections. As shown in our analysis, to a
large extent, the nature of serverless computing and FaaS-based
applications amplifies the lock-in degree. As expected, during the
implementation and manual migration of the use case applications
described previously we encountered multiple compatibility issues
connected with the lock-in problem. More specifically, based on the
encountered problems, we (i) derive different categories of lock-in,
(ii) present possible solutions to these problems, and (iii) also ex-
plain where potential dead ends may occur. Here, by dead end we
mean a solution that forces paradigm shift, i.e., when it is no longer
possible to rely on existing cloud-native service alternatives and
a new solution has to be build from scratch. In general, we faced a
broad spectrum of migration problems, from easily-solvable to com-
plete dead ends that require reimplementing specific parts of the
application. In the following, we discuss different lock-in categories
with respect to the compatibility scope, e.g., whether the lock-in
is related to compatibility of distinct application components, the
entire application, or application-related tooling, and outline the
possible solutions and dead ends.



6.1 Compatibility of Application Components
One of the main problems is to identify compatible services for
every component of a to-be-migrated serverless application. How-
ever, the term compatible here is rather vague, since often service’s
compatibility is determined by a degree of support for a set of re-
quired features. For instance, functions that are hosted on FaaS
platforms typically (i) are implemented in a specific programming
language, and (ii) are triggered by certain event types emitted from
specific event sources. As a result, the target FaaS platform can
be considered compatible if it supports the given combination of
programming language, event types and sources, and provides
built-in integration mechanisms for binding functions and event
sources. Moreover, even if all required features are supported by
the target provider’s service alternative, various additional prob-
lems might occur, e.g., different implementation and configuration
requirements might further complicate the migration process. In
general, FaaS-based components play an important role in server-
less applications, as they provide means to host the application’s
business logic. However, the underlying FaaS offerings vary signifi-
cantly in their feature sets, resulting in multiple compatibility issues
encountered when migrating all use cases described in Section 4.
Additionally, other types of serverless components, e.g., databases,
API Gateways, or messaging solutions offered as a service, might
also be deemed incompatible due to various reasons.

6.1.1 Feature Set Lock-in. Identifying suitable service alterna-
tives and overcoming feature-specific lock-ins are among the major
problems encountered when migrating serverless applications.
Problem: Each component of a deployed serverless application im-
plicitly depends on a specific feature set of the underlying service.
Examples:Multiple examples can illustrate this problem. For in-
stance, one feature set lock-in example was encountered during
migration of the event processing use case described in Section 4.3
from AWS to IBM Cloud. While IBM provides a separate message
queue service called IBM MQ which can be used for implementing
a point-to-point messaging, there is no built-in trigger for invoking
a function hosted on IBM Cloud Functions based on the message
receipt event. Since one feature from the required feature set is not
supported, i.e., a specific trigger cannot be defined, the IBM MQ
service cannot be considered a suitable alternative. It was possi-
ble to overcome this problem by turning a point-to-point channel
into a pub-sub channel, however, for more complex real-world
applications this might become a serious obstacle.

Another example of a feature set lock-in we encountered is the
unsupported language for the serverless API use case described
in Section 4.2. While initially this application was implemented in
Go, it was not possible to migrate functions as-is to Azure Functions
because Go is not supported by the platform. As a result, the only
possible solution was to reimplement all functions.

Required feature set can also include management-related func-
tionalities, e.g., in function orchestration use case described in Sec-
tion 4.4. For example, AWS Step Functions provides a web UI for
observing the execution state in detail, while IBM Composer al-
lows exploring the execution state only using a CLI with a smaller
set of capabilities. Depending on project requirements, such fea-
ture support discrepancy might also become a migration barrier.
Migrating serverless applications to private clouds is even more

complicated, since the service alternatives and their integration,
e.g., with the chosen open source FaaS platforms, consumes more
time and efforts, and can even be infeasible.
Possible solutions and dead ends: As we have seen previously,
the strong feature set lock-in and absence of suitable alternatives
might require reimplementing application’s components. Feasibility
of this decision depends on multiple factors including the size of the
component, integration requirements, etc. Additionally, solutions
like developing your own component’s substitute or integrating
with external third-party alternatives are likely to be infeasible too,
e.g., implementation efforts, increased service costs. As a result,
lack of compatible alternatives might be a migration dead end if
implementation efforts are too costly.

6.1.2 Implementation Requirements Lock-in. This category
is related to provider-specific requirements imposed on the way
components must be implemented. Such kind of lock-in becomes
an obvious problem for FaaS-based application components. For
example, different FaaS platforms specify various requirements
on the way functions have to be implemented, e.g., unlike IBM,
AWS typically requires implementing a specific interface for Java
functions and declare inputs and outputs using generics as shown
in Listing 1. As such requirements must be fulfilled to use the target
service, various dependency types are introduced in the respective
component, which might become a serious portability issue.

Listing 1. Object storage-triggered Java functions on AWS and IBM

public class AWSGenerator implements
RequestHandler<S3Event, Void> {

@Override
public Void handleRequest(S3Event input, Context c) {

// code continues
}

}

public class IBMGenerator {
public static JsonObject main(JsonObject args) {

// code continues
}

}

Problem: Fulfillment of provider-specific implementation require-
ments introduces multiple types of dependencies that must be taken
into consideration as they might affect application’s portability.
Example: Implementation and packaging guidelines. In case
of FaaS functions developed for the use cases from Section 4, the
business logic typically had to be wrapped into a more or less fixed
code skeleton (sometimes with a certain degree of flexibility). For ex-
ample, function handlers need to have a specific name and structure,
a specific interface must be implemented, or a function’s signature
must conform to a certain format. By introducing such wrapping
around the actual business logic, functions become dependent on
provider’s requirements. Moreover, functions are packaged and
deployed differently, e.g., AWS allows having multiple functions in
one package whereas Azure allows only one function per package.

Such problems can also be encountered for non-FaaS compo-
nents. For instance, function orchestration workflows from the use
case described in Section 4.4 are defined and triggered differently,



e.g., AWS Step Functions allows specifying a workflow using a cus-
tom DSL and does not need an orchestrating function for running
the workflow, whereas Azure Durable Functions allows defining
workflows in code and need an orchestrating function to run them.
As a result, specification and packaging dependencies contribute to
the degree of lock-in into vendor’s requirements.
Example: Format and data types dependencies. One interest-
ing example of a data type dependency we encountered in all use
cases from Section 4 is also related to FaaS-hosted functions. On
the conceptual level, event types always look similar, e.g., database
insert event, which is definitely not the case for real implemen-
tations. Every provider has a specific way of passing events to
functions, also, depending on if the chosen programming language
is strongly-typed. For example, AWS provides a separate library
for working with service-specific events, e.g., AWS S3 events. As a
consequence, the function code becomes coupled with specific data
types, which in most cases are not compatible with other providers.
Interestingly, event if the language is weakly-typed, e.g., JavaScript,
the event handling code is still coupled with the format required
by the provider. Since events in JavaScript are objects consisting
of properties and their values, the event processing logic must still
access property names defined by providers, which inevitably cou-
ples the function with provider’s formats and data types similar to
an example shown in Listing 2.

Listing 2. Excerpts from the ‘ingest‘ function in the event processing use case
that store an event as a deserialized JSON object in the ‘message‘ variable.

// AWS JavaScript function definition
module.exports.handleIngest = async (event) => {

let message = JSON.parse(event.body);
// code continues

}

// Azure Functions JavaScript function definition
module.exports.handler = async function (context, req) {

let message = req.body;
// code continues

}

// IBM Cloud Functions JavaScript function definition
exports.main = async function(args) {

let message = args;
// code continues

}

Example: Library dependencies. Obviously, for cases when the
component’s code must use custom data types, the library depen-
dency is introduced. Additionally, usage of specific libraries might
result in a so-called version lock-in [17]. We encountered a ver-
sion incompatibility issue when implementing in C# for Azure
Functions for the serverless API and function orchestration use
cases described in Sections 4.2 and 4.4. There, the triggers were not
identified correctly because storage account library version was in-
compatible with the core library, which was resolved by reverting it
to an earlier version. Library dependencies are introduced not only
for processing custom data types, but also, e.g., for interacting with
provider-specific APIs. Another problem happened when migrating
the serverless API use case described in Section 4.2 to IBM Cloud.
While Go executables mostly do not rely on dynamically linked

libraries, for network communication the dynamically-linked imple-
mentation of the net package is used by default. Some minimalistic
Linux images used for function containers might lack these depen-
dencies, eventually preventing executables to run, which happened
in our case too. This library dependency problem was resolved by
disabling a CGO package which allows using C code within Go
before running the build.
Example: Service interaction dependencies. Another interest-
ing dependency is related to the provider-specific service inter-
action requirements. One good example we encountered is the
object storage interaction, which required different actions across
providers in the thumbnail generation use case described in Sec-
tion 4.1. More specifically, the bucket triggers a function whenever
an image is uploaded and the function must generate a thumbnail
from this image. The caveat here is how to access the image from
code, e.g., AWS events provide a reference to the corresponding
bucket and image, and the function’s code needs to include the
image retrieval logic. Conversely, when Azure Object Storage’s
event triggers a function, the image can be directly accessed from
the event data, which changes the way function’s code has to be
implemented. While this does not introduce big problems for this
simple use case, such dependencies might become a problem for
more complex scenarios.
Possible solutions and dead ends: Depending on the structure
of a given application, tackling problems introduced by locking
into implementation requirements might become a serious barrier.
While aforementioned dependency types are quite heterogeneous,
many of them can be relaxed by employing a stronger separation
of concerns, i.e., by modularizing the actual business logic into
separate libraries and writing the provider-specific code around
them. We used this approach in several use cases, and in particu-
lar for serverless API and function orchestration applications de-
scribed in Sections 4.2 and 4.4. The business logic was packed into
a vendor-agnostic library which was used in vendor-specific code
that handles inputs and outputs as well as interacts with remote
services. As a consequence, migrating such modularized functions
was significantly easier.

In theory, it is also possible to smoothen the event format discrep-
ancies by using a vendor-agnostic event formats such as CloudE-
vents, and performing vendor-specific format transformation out-
side of the vendor-agnostic business logic package. Modularization,
however, does not help significantly with overcoming service inter-
action and library dependencies, since the provider-specific code
will still need to be written. One possible direction to simplify such
problems is to facilitate boilerplate code generation for various
cases and combinations, similar to how standard Maven archetypes
are introduced by providers for FaaS development.

6.1.3 Configuration Requirements Lock-in. Similar to imple-
mentation requirements, a very crucial part is the way services
are configured as parts of the application. This dimension includes
both service- and application-level requirements.
Problem: Fulfillment of provider’s configuration requirements intro-
duces tight-coupling which affects application’s portability.
Examples: A good illustration of a FaaS-specific configuration en-
countered for all use cases (see Section 4) is the definition of triggers
that link together provider-specific services and functions. In AWS



Lambda, the triggers are defined externally in several possible ways
including web UI, or establishing these binding by means of a de-
ployment model defined using AWS Cloud Formation’s DSL or
AWS SAM template.
Listing 3. YAML Trigger definition for AWS Lambda in Serverless framework

functions:
upload:
handler: <PACKAGE_PATH>
events:
- http:

path: upload
method: post

In contrast to AWS Lambda’s approach, Azure Functions plat-
form allows configuring function triggers directly in the function’s
code, e.g., by means of Java annotations as shown in Listings 3
and 4. Such configuration binding implies certain code modifi-
cations and have to be taken care of when migrating functions.
Application-level configuration examples include security-related
configurations, naming conventions, e.g., AWS S3 bucket names
must be globally-unique, while Azure Object Storage names must
be unique only within the scope of a storage account.

Listing 4. Trigger definition for Azure Functions in Java using annotations

@FunctionName("Upload-Image")
@StorageAccount(Config.STORAGE_ACCOUNT_NAME)
public HttpResponseMessage upload(

@HttpTrigger(name = "req", methods = {HttpMethod.POST},
authLevel = AuthorizationLevel.ANONYMOUS)
HttpRequestMessage<String> request,

@BindingName("name") String fileName,
@BlobOutput(name = "out", path = "input/{name}")

OutputBinding<byte[]> blobOutput) {
// code continues

}

Possible solutions and dead ends: To some extent, this problem
and possible solutions are similar to implementation requirements,
i.e., using modularization where possible, trying to use provider-
agnostic formats, e.g., for deployment modeling, etc. However, in
the majority of the cases it is not possible to avoid locking into
provider-specific configurations as it is the only way to start us-
ing desired services. One possible direction here is to automate
the process of mapping configurations. Obviously, an increase in
number of standardization initiatives related to various aspects
of implementation and configuration requirements and their suc-
cessful adoption could be a step towards more portable serverless
applications. CloudEvents, a common events format endorsed by
CNCF, is one example of such initiatives. Other examples could
be standardized trigger definitions, function descriptors, usage of
provider-agnostic deployment modeling languages together with
the third-party middleware, etc.

6.1.4 Service Limitations Lock-in. Often, it is the case to cou-
ple application’s components implementation with existing limita-
tions of the chosen offering, e.g., adapting the business logic to fit
into allowed execution time or the impossibility to assign a desired
amount of computer resources.

Problem: When using a specific service offering, applications become
dependent on service-specific limitations, e.g., resource consumption
limits or allowed data transfer rate.
Examples: For example, AWS Step Functions and IBM Composer
set a maximum allowed limit for function input size, whereas Azure
Durable Functions do not have any limits. This difference might
require implementing functions differently, e.g., in the function
orchestration use case described in Section 4.4 we had to imple-
ment inputs/outputs caching for orchestrators that impose such
limits, whereas implementing the caching mechanism for providers
without input-output limits is not required. Other examples of such
limitations might be different limits imposed by providers on func-
tion execution time or compute resources.
Possible solutions and dead ends: Locking into service-specific
limitations such as particular execution time limits might also be
a dead end, since the migrated component will need to be reim-
plemented in order to comply with new requirements. Here, the
feasibility of actions is determined by the concrete use case. For
example, if a FaaS-hosted function is developed according to the
common guidelines to be stateless and short-lived, then execution
time limits are not supposed to affect its portability. Conversely,
if the function strongly depends on a particular setting of a plat-
form, it will likely require modifications for hosting it on another
FaaS platform, or even has to be reimplemented. In some cases,
reimplementing architecture’s components using different archi-
tectural style can help solving the migration issues. However, the
decision whether such solution is acceptable or not, strongly relies
on multiple aspects including project’s requirements, costs, etc.

6.2 Tooling Compatibility
The compatibility of the application-related tooling is another im-
portant aspect of serverless applications’ migration.
Problem: Locking into specific tooling, e.g., which facilitates the
development, deployment, or observability of an application, might
complicate its portability or even make it not directly possible.
Examples: For example, a common way is to automate the deploy-
ment of applications using deployment modeling and orchestration
technologies such as AWS Cloud Formation, Terraform, or Server-
less framework. Such technologies can be either provider-specific
like AWS Cloud Formation, or support multiple target providers
such as Serverless, which becomes increasingly popular for describ-
ing the deployment and configuration of serverless applications.
However, while supporting multiple providers, the deployment
models defined using Serverless are not provider-agnostic, due to
the description of provider-specific services, event types, etc, as was
encountered when using Serverless framework for the use cases
described in Section 4. As a result, these models have to be specified
separately for target providers. Similar problems might occur when
the development process also relies on provider-specific monitoring
and testing solutions, custom CI/CD pipelines that will need to be
modified or completely replaced with some compatible alternatives.
Possible solutions and dead ends: Unfortunately, for this prob-
lem the choice of possible solutions depends on the actual tool
or a set of tools that are used. In case of deployment automation,
provider-agnosticism is a well-known problem [23], and one of
the possible solutions is to use vendor-agnostic cloud modeling



languages such as TOSCA [19]. However, the major risk is still to
introduce provider-specific parts in these deployment models. For
example, Serverless framework also uses a customDSL to specify de-
ployment models, but essentially these models are tightly-coupled
with specific providers and cannot be reused directly for migration
use cases as they rely on custom events and services. One possible
way to relax the lock-in is to use modularization of deployment
models where possible, e.g., by using inheritance and include state-
ments if the language supports such constructs, as well as providing
means to generate and transform boilerplate parts of the models.
Similar directions can be followed for other tools, e.g., switching
to provider-agnostic monitoring solutions if possible, but in many
cases such change might require changing multiple components,
e.g., adding new or integrating existing log emitting side cars for
monitoring with custom, provider-agnostic solutions.

6.3 Architecture Compatibility
Surprisingly, this problem is rather about maintaining and not
tackling one type of the lock-in, called architecture lock-in [17].
The main question here is whether the migrated application needs
to be compatible with the original architectural style, i.e. remain
serverless after the migration.
Problem: The architectural style of a migrated application changed
after the migration is performed, making the application potentially
incompatible with the originally used architectural style.
Examples: In case of the service incompatibility problem we en-
countered with the event processing use case described in Sec-
tion 4.3, after substituting the point-to-point channel with a pub-sub
channel we eventually obtained a more or less compatible archi-
tecture, yet with a completely changed semantics for one of the
components. For migrating serverless applications, the discrepancy
between source and target components, or their incompatibility
might cause the switch from serverless to serverful architecture
where provider-managed components were eventually substituted,
e.g., with manually integrated PaaS or IaaS-hosted components.
Possible solutions and dead ends: Essentially, deciding if the
change of architectural style after migration is acceptable or not
is related to organization and project requirements as well as how
efficient the end solution is. For example, if the resulting solution
requires, e.g., implementing and integrating new triggers or reim-
plementing entire components using IaaS, it becomes a dead end.

7 RELATEDWORK
To the best of our knowledge, there are no existing publications
trying to explore and analyze the lock-in aspects encountered when
migrating serverless, FaaS-based applications.

Multiple publications focus on portability and interoperability
aspects of cloud applications and vendor lock-in problems. Silva et
al. [28] conduct a systematic study that analyzes and classifies cloud
lock-in solutions existing in research literature. Opara-Martins et
al. [25] discuss the issues associated with portability and interoper-
ability, focusing on the vendor lock-in problem. Authors describe
various types of challenges also including brief description of such
technical challenges as integration and data portability. However,
the overall discussion stays on the high-level and does not con-
tain the details about serverless and FaaS. Lipton [19] discusses

how TOSCA, a provider-agnostic cloud modeling language [7] stan-
dardized by OASIS, can help avoiding locking into specific cloud
providers. Miranda et al. [22] propose an approach using software
adaptation techniques to tackle the vendor lock-in problem. Au-
thors describe various types of application’s component matching,
e.g., component-to-component mismatch where migration of com-
ponents to another cloud provider introduces a need to adapt the
communication between them. While being related, the paper dis-
cusses component mismatch types on the high-level with the focus
on traditional cloud service models, and without investigating the
specifics of serverless and FaaS. Hohpe [17] discusses various types
of lock-in, also including the vendor lock-in problem. In this article,
the lock-in is described as a problem that is not always beneficial
to tackle, since successfully tackling one lock-in type might intro-
duce another lock-in. The described classification of lock-ins covers
various aspects, from vendor and architecture lock-in to more orga-
nizational lock-in types such as legal or skills lock-in. In our work
we refer to some of the lock-in types described in this article, e.g.,
architecture and version lock-ins, however, we mostly focus on
various dimensions of vendor lock-in in the context of serverless
and FaaS-based applications and connections between other lock-in
types with the problems we encountered in our experiment.

Cloud migration is a well-established topic addressed by multiple
researchers. Andrikopoulos et al. [2–4] elaborate on the challenges
of migrating applications to the cloud and discuss the aspects of
decision support for migrating existing applications. Multiple di-
mensions of requirements including elasticity, multi-tenancy, costs,
security and data confidentiality, quality of service, are analyzed
to form a holistic migration decision support framework. Binz et
al. [9] introduce the framework for migrating applications to the
cloud and across cloud providers based on search for suitable host-
ing alternatives for a given application model. Strauch et al. [29]
present a provider- and technology-agnostic multi-step methodol-
ogy for migrating application’s database layer to the cloud. Multi-
ple described migration challenges remain relevant when porting
serverless applications across providers, e.g., data exchange for-
mat differences, security and cost aspects. However, the discussed
approaches focus more on the legacy-to-cloud migration and do
not elaborate on lock-in aspects in the domain of serverless com-
puting. In this work, we focus solely on analyzing and structuring
lock-in aspects of cloud-native, serverless applications, without
considering other dimensions. The existing work on cloud migra-
tion can serve as a baseline for facilitating the decision support on
portability of serverless applications. In addition, several discussed
challenges become more restricted in the context of serverless ap-
plications influencing the overall portability strategy, e.g., elasticity
w.r.t. provider-managed components or choice of the cloud service
model for application components.

8 CONCLUSION AND FUTUREWORK
In this paper, we designed and conducted an experiment in which
we implement and manually migrate four common serverless, FaaS-
based application use cases across three well-known commercial
cloud providers. We intentionally use simplified applications to
demonstrate that even in such scenarios, multiple lock-in problems
are encountered. We analyze several categories of encountered



lock-in problems and outline possible solutions, which might help
relaxing the degrees of lock-in as well as discuss when these solu-
tions become dead ends.

Essentially, the nature of serverless computing, and FaaS, am-
plify the lock-in problems since all components are intended to be
managed by providers, resulting in multiple dimensions of a vendor
lock-in problem. We can highlight the following findings:

➤ portability of components is affected by multiple lock-in
types, e.g., feature set lock-in, implementation and configu-
ration requirements lock-ins, or service limitations lock-in

➤ implementation requirements lock-in is introduced due to
multiple dependency types, including implementation and
packaging guidelines, format and data type dependencies,
library dependencies, etc.

➤ some lock-in types can be relaxed by modularizing the busi-
ness logic and parts of configurations where possible, using
provider-neutral formats, etc.

➤ lack of compatible component alternatives might become a
migration dead end

➤ the decision to comply with the serverless paradigm might
require maintaining the architecture lock-in, meaning that
reimplementation of components as non-serverless forces
the paradigm shift

➤ the lock-in into tooling might also affect serverless applica-
tion’s portability

The encountered problems are amplified even more when the
migration scenarios involve on-premise hosting of components as a
target. For instance, FaaS offerings from commercial providers are
so strong not only because of FaaS platforms themselves, but also
because of the reach network of services with built-in integration.
In contrast, self-hosted solutions require not only identifying the
suitable alternative for FaaS platforms and services, but also in most
of the cases spending a lot of efforts on integrating them together. In
future work, we plan to investigate the decision support process on
whether the portability of a given serverless, FaaS-based application
is possible and how to automate its migration process.
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