b b H Institute of Architecture of Application Systems

A Systematic Mapping Study on Engineering
Function-as-a-Service Platforms and Tools

Vladimir Yussupov, Uwe Breitenblcher, Frank Leymann, Michael Wurster

Institute of Architecture of Application Systems,
University of Stuttgart, Germany,
{yussupov, breitenbuecher, leymann, wurster}@iaas.uni-stuttgart.de

BIBTRX:

@inproceedings{Yussupov2019 SystematicMappingStudyFaas,
author = {Vladimir Yussupov and Uwe Breitenb{\"u}cher and Frank Leymann
and Michael Wurster},

title = {{A Systematic Mapping Study on Engineering
Function-as-a-Service Platforms and Tools}},

booktitle = {Proceedings of the 12th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC 2019)},

publisher = {ACM},

year = 2019,

month = dec,

pages = {229--240}%,

doi = {10.1145/3344341.3368803}

(OMOM

© Yussupov et al. 2019. This is an Open Access publication licensed under
the Creative Commons Attribution 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA
94042, USA.

Universitat Stuttgart

Germany

A Systematic Mapping Study on Engineering
Function-as-a-Service Platforms and Tools

Vladimir Yussupov
Institute of Architecture of Application Systems
University of Stuttgart, Germany
yussupov(@iaas.uni-stuttgart.de

Frank Leymann
Institute of Architecture of Application Systems
University of Stuttgart, Germany
leymann@iaas.uni-stuttgart.de

ABSTRACT

Function-as-a-Service (FaaS) is a novel cloud service model allowing
to develop fine-grained, provider-managed cloud applications. In
this work, we investigate which challenges motivate researchers to
introduce or enhance Faa$S platforms and tools. We use a systematic
mapping study method to collect and analyze the relevant scien-
tific literature, which helps us answering the three clearly-defined
research questions. We design our study using well-established
guidelines and systematically apply it to 62 selected publications.
The collected and synthesized data provides useful insights into
the main challenges that motivate researchers to work on this topic
and can be helpful in identifying research gaps for future research.

CCS CONCEPTS

« Software and its engineering — Cloud computing.

KEYWORDS

Serverless; FaaS; Function-as-a-Service; Systematic Mapping Study

ACM Reference Format:

Vladimir Yussupov, Uwe Breitenbiicher, Frank Leymann, and Michael Wurster.
2019. A Systematic Mapping Study on Engineering Function-as-a-Service
Platforms and Tools. In Proceedings of the IEEE/ACM 12th International
Conference on Utility and Cloud Computing (UCC ’19), December 2-5, 2019,
Auckland, New Zealand. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3344341.3368803

1 INTRODUCTION

The landscape of cloud computing [18] service models is changing
constantly. In general, cloud service models evolve in the direction
of offering finer-grained compute models with reduced mainte-
nance efforts, e.g., from Infrastructure- to Platform- and Software-
as-a-service. Serverless computing [4] follows the overall direction
of making infrastructure management a provider’s responsibility.
Serverless applications comprise provider-managed components,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UCC 19, December 2-5, 2019, Auckland, New Zealand

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6894-0/19/12.

https://doi.org/10.1145/3344341.3368803

Uwe Breitenbiicher
Institute of Architecture of Application Systems
University of Stuttgart, Germany
breitenbuecher@iaas.uni-stuttgart.de

Michael Wurster
Institute of Architecture of Application Systems
University of Stuttgart, Germany
wurster@iaas.uni-stuttgart.de

which creates a wrong impression that servers are absent. A recent
newcomer in the line of as-a-service offerings called Function-as-
a-Service (FaaS) is often associated with the term serverless, as it
allows developers to compose applications using arbitrary, event-
driven functions managed by providers. Prominent commercial and
open source offerings include AWS Lambda [2], Microsoft Azure
Functions [19], Apache Openwhisk [25], and OpenFaaS [20]. More-
over, FaaS employs an event-driven computing paradigm, meaning
that FaaS-hosted functions are typically triggered by events. An-
other important aspect is a scale-to-zero property that helps saving
costs by scaling idle instances to zero, which is typically not the
case in, e.g., Platform-as-a-Service offerings. While there are works
formulating open challenges for FaaS platforms [4, 26, 27], the
rapid technology evolution complicates understanding why new
platforms and tools are introduced in research instead of using
existing technologies. Furthermore, the large amount of available
proprietary and open source solutions raises a question if and how
the introduced research concepts complement existing solutions.
In this systematic mapping study, we aim to answer the follow-
ing research question: what are the challenges and drivers motivat-
ing researchers to engineer new or extend existing FaaS platforms
and platform-specific tools. We rely on the well-known guidelines
for conducting systematic mapping studies [14, 22, 23] and struc-
ture our work based on several existing systematic mapping stud-
ies [7, 8]. The main contributions of this work are: (i) a reproducible
and reusable study design and classification framework and (ii) a
systematically-obtained map of state-of-the-art research on the
topic of FaaS platform and tooling engineering combined with
analysis of relations of the proposed concepts to existing solutions
published until June of 2019. We design and carefully follow a
reproducible data search, selection, extraction, and synthesis pro-
cess. The initial search is conducted using six well-known elec-
tronic databases, including IEEE Xplore, ACM Digital Library, and
Springer Link. The resulting set of 62 publications is obtained via a
multiphase process using precise selection criteria and techniques
such as snowballing. Using a systematically-defined classification
framework, we carefully synthesize and present the final results.
The remaining paper is structured as follows. In Sections 2 and 3
we describe the fundamentals and related work. Section 4 provides
a detailed description of the study design. Sections 5 to 7 present
the answers on the stated research questions. Finally, Section 8
describes the threats to validity, and Section 9 concludes this work.

https://doi.org/10.1145/3344341.3368803
https://doi.org/10.1145/3344341.3368803
https://doi.org/10.1145/3344341.3368803

2 FUNDAMENTALS

The term serverless is used in various contexts, e.g., to describe p2p
networks, RFID-based protocols, and, more recently, a cloud para-
digm that focuses on developing applications comprising provider-
managed components [10]. FaaS is a novel cloud service model,
which allows developers to deploy arbitrary, event-driven code
snippets managed by cloud providers, that is commonly linked
with the idea of serverless. Essentially, with Faa$ the infrastructure
is abstracted away giving an impression that servers are absent.
This, however, is misleading, as resource management, monitoring,
scaling, and fault tolerance become instead a burden of cloud ser-
vice providers [4]. Frequently advertised features of Faa$S include
(i) a fine-grained programming model focusing on “boilerplate-less”
business logic development, (ii) an automated and effortless scaling
ensured by providers, (iii) a scale to zero property, which also results
in a flexible cost model that ignores the idle periods. In spite of
its advantages, FaaS has certain drawbacks [4, 13], which might
influence the final decision on adopting it. For example, function
execution is typically limited in time, with the actual limit depend-
ing on the cloud provider. Ephemeral and stateless Faa$S functions
often need to persist the state in shared storage systems, which
imposes additional requirements on developers. Moreover, the cold
start problem affects the startup time of first function instances,
since the function’s runtime must be equipped with dependencies
required for running the function. Typically, function’s compute
resources are not terminated right after the execution, to allow
reusing them for next calls. In case if there are no calls for a certain
amount of time, compute resources are eventually scaled to zero.

3 RELATED WORK

To the best of our knowledge, there is no study analyzing the pub-
lished research on engineering FaaS platforms and platform-specific
tooling. Sadaqat et al. [24] conduct a multivocal literature review on
serverless computing. The authors analyze core technological com-
ponents, benefits and challenges (operational and for developers),
and evolution trends for serverless computing. The study focuses
on general aspects of serverless computing and is not sufficient for
answering the research questions we define in this study.

Numerous works evaluate commercial and open source FaaS
solutions [11, 15, 17] focusing on analysis of supported features
and comparison based on the identified feature sets. Leitner et
al. [16] presents a mixed-method empirical study focusing on FaaS
development in industrial practice, which combines a gray litera-
ture analysis with interviews and online questionnaire. Multiple
works discuss open challenges for FaaS platforms [4, 27] including
software engineering, system (operational), and performance chal-
lenges. In addition, an initial version of the reference architecture
for Faa$S platforms is introduced by van Eyk et al. [26]. Several
systematic mapping studies [1, 7, 8, 21] analyze various aspects
of microservice architecture development such as research trends
and challenges, various aspects related to architecting microser-
vices, and the potential for industrial adoption of the introduced
concepts. Di Francesco et al. [6] investigate aspects of migrating
applications to microservice architectures by means of an industrial
survey. Ghofrani and Liibke [12] conduct an empirical survey on
the state of the practice in microservice architectures.

4 STUDY DESIGN

The goal of this research is to systematically collect and analyze the
existing state-of-the-art research literature that focuses on develop-
ing new or enhancing existing Faa$ platforms and tools. Essentially,
the main research question is formulated as follows: “What are
the main challenges and drivers behind the newly-introduced or en-
hanced FaaS platforms and tools and how the proposed solutions are
related to existing production-ready software?” The study design
follows the existing guidelines for conducting systematic mapping
studies [5, 14, 22, 23], and its structure and content organization is
influenced by existing, published systematic mapping studies on
the topic of microservice architectures [7, 8]. In the following, we
describe the study design in-detail.

4.1 Research Questions

To answer the main research question, we formulate more precise
and finer-grained research questions as follows:

RQ1. “What are the publication trends in published research fo-
cusing on developing new or modifying existing Faa$ platforms and
tools?” By answering this question, we intend to understand the
trends in state-of-the-art scientific research including (i) general
statistics on years and publication types, which helps understand-
ing the intensity of research on development and modification of
Faa$ platforms and tools, (ii) highlighting venues chosen most fre-
quently to publish on the topic, and (iii) demonstrating the trends
in preferred research strategies.

RQ2. “What are the main challenges and drivers behind the pub-
lished research on developing new or modifying existing Faa$S plat-
forms and tools?” With this research question, we intend to explore
the existing scientific work and to identify the challenges and dri-
vers that motivate researchers to work on this topic as well as to
cluster and analyze the correlations among proposed solutions. The
results aim to (i) help in identifying the research gaps, (ii) serve as a
basis for current or future research on Faa$S platforms and tools, and
(iii) identify features missing in existing production-ready solutions.

RQ3. “What are the connections between the published research and
industry?” By answering this question, we want to understand how
industry is involved, both in a form of company participation in
authoring publications and reuse of existing production-ready FaaS
solutions. These data might shed some light on how realistic is it to
bring new concepts into production, e.g., more chances for mixed
and industry-only publications, and how much effort does it take
to achieve it, i.e., if the prototypes are available and can be reused.
This includes statistics on: (i) industrial participation in scientific
publications, (ii) commercial and open source FaaS platform and
tooling usage in the proposed concepts, and (iii) availability of
research prototypes for exploration and reuse.

4.2 Data Sources and Search Strategy

The initial release of a pioneering Faa$S platform from Amazon Web
Services called AWS Lambda happened in November of 2014 [3].
We chose to include all literature appearing five years before AWS
Lambda was announced to capture any potential related work prior
to beginning of the FaaS trend. As a result, the chosen time frame

Initial Title and Merge and Selection
search Abstract peduplication Criteria (6}

(3256) (233) : applied Combination

ACM | | 359 | 64
Digital

Library Snowballing

arXiv.org

IEEE
Xplore

| 67

Science
Direct

Springer
Link

Wiley
Online
Library

Figure 1. A multiphase search and selection process
(figure is based on the idea by Di Francesco et al. [8])

for publications search is set for a time period from 2009 to 2019.
Following the existing guidelines [14, 22, 23] and examples from
multiple related works [5, 7, 9] we use a multiphase process, to
have a better control over the final results. Figure 1 depicts an
overview of the used multiphase search and selection process. In
the following, we describe each phase in-detail starting with the
description of initial search organization.

4.2.1 |Initial search. For this systematic mapping study, we choose
the electronic databases recommended in well-established guide-
lines [14, 22, 23], which are also used in numerous related stud-
ies [5, 7, 9]. To conduct the initial search, we queried six major
scientific electronic databases, namely: (i) ACM Digital Library,
(ii) arXiv.org, (iii) IEEE Xplore, (iv) Science Direct, (v) Springer Link,
and (vi) Wiley Online Library. To increase the list of possible candi-
dates, we define a generic search string, which contains high-level,
FaaS-related keywords, as shown in Listing 1.

(serverless OR "Function-as-a-Service"
OR FaaS OR "Function as a Service")

Listing 1. A query string used for initial literature search

The large number of false positives from IEEE Xplore and Sci-
ence Direct is due to the fact that the keyword Faa$ is used in
multiple domains with different meanings, e.g., flame atomic ab-
sorption spectrometry (FAAS). In addition, the stemming used by
some search engines results in multiple false positives that refer
to Federal Aviation Administration (FAA). As a result, we search
the results in arXiv.org, Springer Link, and Wiley Online Library
using a Computer Science subject filter as it is supported by the
respective search engines. The initial search resulted in collecting
3256 entries in total.

4.2.2 Screening based on the titles and abstracts. In this search
phase, we pruned the set of results obtained during the previous
phase based on their relevance to the topics of serverless computing
and FaaS. The majority of the results were analyzed based on the

title and abstract. However, when the topic of the paper was close
and its relevance could not be determined from the title and abstract,
we also used adaptive reading depth [23] to decrease the number of
false negatives. After pruning the initial search results, we obtained
233 entries identified as related to serverless or FaasS.

4.2.3 Merge and De-duplication. After identifying the set of publi-
cations relevant to the topics of FaaS and serverless, we merged all
results into a single dataset and identified duplicate entries based
on the combination of a title, author names, publication year and
venue. In cases when both, a pre-print and a published version
were available, the preference was given to the latter. In total, after
merge and de-duplication the dataset contained 218 entries.

4.2.4 Applying the Selection Criteria. In this search phase, the se-
lected works are filtered based on a set of precise selection criteria
listed in the following. For the majority of selected studies we used
adaptive reading depth [23] as it was sufficient to determine the
work’s relevance. The entire dataset was separately screened by
three researchers. All records of dubious relevance, e.g., a FaaS-
based application, which incorporates a FaaS platform as its com-
ponent for internal use, were marked with a to-be-resolved tag and
further discussed until the consensus was reached. After applying
the selection criteria, the size of the dataset reduced to 59 entries.
The set of selection criteria defines which publications are to be

included (v') and which are to be excluded (x):

v Publications introducing novel general-purpose Faa$S plat-
forms and tooling, e.g., tooling related to testing, monitoring,
or deployment automation, or extend existing ones with
additional features.

V' Publications that focus on architectural solutions, methods,
algorithms, and optimization techniques targeting specific
aspects of Faa$ platforms or tools, e.g., the cold start problem
or support for long-running tasks.

v Publications that are written in English

x Publications on development of FaaS-based applications,
and also solutions, which embed existing FaaS platforms
as domain-specific job scheduling components.

X Publications that evaluate and compare existing FaaS plat-
forms and tools without proposing any modifications.

X Secondary or tertiary studies, e.g., systematic literature re-
views and surveys.

X Publications not available as full-text or not in the form of
a full research paper, e.g. extended abstract, presentation,
tutorial, PhD research proposal, demo paper, as they do not
provide enough details.

4.2.5 Snowballing. In the next phase, to increase the set of relevant
literature we applied a complementary activity referred to as snow-
balling technique [29]. The main idea of backward snowballing is to
search for related papers in the references section of each selected
paper. In forward snowballing, for each selected paper one need to
analyze all papers that cite it. We applied forward (using Google
Scholar) and closed recursive backward snowballing. The new stud-
ies were checked against the selection criteria, which resulted in
increase of the dataset’s size to 67 entries.

4.2.6 Combination. As several works might be related to the same
concept, e.g., a journal extension of a previously-published con-
ference paper, in the next phase, we analyze and link related pa-
pers [8, 30]. This activity was conducted after the snowballing phase
to increase the chances of finding more connections between se-
lected papers. As a result, we identified a final set of 62 publications
after completing all the phases.

4.3 Data Extraction and Synthesis

With respect to every research question, we extract the correspond-
ing information as described in the following.

4.3.1 Publication trends (RQ1). To answer this question, we extract
these data: (i) publication year, (ii) venue, e.g., conference, journal,
or pre-print, (iii) name of the venue, e.g., IEEE CLOUD or USENIX
ATC, and finally, (iv) research strategy.

4.3.2 Challenges and drivers (RQ2). To develop an initial classifi-
cation framework, we apply the keywording technique [22]. The
overall idea of keywording is to systematically define a classification
scheme for categorizing the selected publications [23]. Keywords
are assigned to the concepts identified in the publications and used
to create an overall structure for categorizing the selected publi-
cation. The keywording process for defining a set of classification
categories includes the following sequence of steps:

a) Select an initial set of publications. Two researchers randomly
selected ten research papers each. This set of publications was used
to derive an initial set of keywords.

b) Identify keywords and concepts. By reading the full text of pub-
lications from the initial set, a set of keywords describing related
concepts was derived by combining all the collected information
obtained from every publication in the initial set. The gathered in-
formation provided an initial overview of the landscape of targeted
challenges and proposed solutions.

c) Cluster keywords and formulate a starting list of categories. The
collected keywords were analyzed with respect to the open chal-
lenges described in existing scientific works [4, 26, 27] and clustered
into an initial classification framework. Examples of obtained cate-
gories include “Function execution” or “Testing and observability”.

d) Complete data extraction. During this step, all remaining studies
were analyzed based on the previously-defined framework. Addi-
tional relevant data missing in the framework was collected for
refinement, which resulted either in reassessing the classification
results or updating the framework.

4.3.3 Connections with industry (RQ3). To answer this question,
we extract the following statistical data: (i) industrial participa-
tion in academic publications, (ii) production-ready FaaS solutions
usage, and (iii) availability of prototypical implementations. The
obtained information aims to show how often companies partic-
ipate in published research, which FaaS solutions are frequently
used, and how often the prototypes are available for reuse and how
they are related to existing FaaS solutions, e.g., are based on them.

4.3.4 Data Synthesis. Finally, we analyze and summarize the final
results by classifying them into a broader set of categories and using
the narrative synthesis, i.e., using primarily the textual description
for summarizing and explaining the findings in detail [8].

4.4 Information Management and
Reproducibility of the Study

To facilitate the reproducibility of this mapping study, the self-
contained replication bundle is made publicly-available [34]. The
bundle comprises raw data for each step, the final list of selected
research papers, and the data extraction forms.

For literature collection and de-duplication, we use JabRef!, an
open source bibliography reference manager. For collaboration and
data extraction we use shared Google Docs and Google Sheets in
particular. To automate the data extraction and avoid manual collec-
tion errors, we used extraction scripts created by means of Google
Apps Script, which allows creating custom functions for Google
Sheets. In all cases, scripts were used for simple traversal of the
given sheet and manipulation with the collected data, e.g., counting
total numbers based on the required conditions or concatenating
multiple values and printing them in the desired format.

5 RESULTS: PUBLICATION TRENDS (RQ1)

In this section, we present the results obtained after synthesizing
the data extracted for the first research question.

Publication years. In Figure 2, which depicts the distribution of
publication types over the years with respect to quarters, we can ob-
serve a growing interest in the topic of FaaS platforms and tools. The
first relevant publications started to appear in 2016 (2/62), with one
focusing on developing an open source research Faa$ platform (P13)
and another focusing on the cost modeling for microservices and
FaaS-based applications. In the next three years the amount of pub-
lications increased drastically, with the sharp rise in 2018 (33/62).
Figure 2 shows the presence of eleven publications in the second
and the third quarters of 2019, which, however, represent those
quarters in the final set of selected publications only partially, since
the search was completed by mid June 2019.

'

'

]
Workshop !
(10 publications) ~I~

'
'
'
'
!
]
]

]
'
'
'
!
]
nt '
(10 publications) ~'~ = = 71~ =~
]
]
'
'
'
'
]

(5 publications)

Conference
(37 publications) =1~ = = =
'

-~ - -~
2016 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018 2018 2019 2019 2019 2019
@) (@ (@) (@) @) (@) (@) @) @) (@) (@) @) @) (@2 (@3 (@4

Figure 2. Distribution of publication types per year

Publication types. The most popular publication type is a confer-
ence paper (37/62), while the second place is shared between the
workshop paper (10/62) and pre-prints (10/62) via arXiv.org. As both
workshop papers and pre-prints are considered to be a good option
for getting the feedback on early work, the increase in numbers
might serve as an additional indicator of a growing interest in the

Uhttps://www.jabref.org

Table 1. The list of publications with respect to their research strategy

Research Strategy Count Ratio Publications

Validation research 42 68% P5,P7,P9, P10, P11,
P12, P14, P15, P16,
P17, P19, P20, P22,
P23, P24, P27, P28,
P31, P32, P33, P36,
P37, P40, P41, P42,
P44, P45, P46, P48,
P49, P50, P51, P53,
P54, P55, P56, P57,
P58, P59, P60, P61,
P62

P2, P6, P13, P18,
P21, P25, P29, P30,
P39, P52

P1, P3, P4, P8, P26,
P35, P38, P43, P47
Philosophical paper 1 2% P34

Solution proposal 10 16%

Evaluation research 9 14%

topic. Finally, journal article (5/62) publication type is starting to
appear only in 2018, which can be explained by the longer duration
of a journal publishing process.

Publication venues. In general, the list of venues preferred by re-
searchers is large and fragmented, with the 42 distinct venues in to-
tal. Apart from the pre-prints published directly to arXiv.org (10 pub-
lications), the top three venues include International Workshop on
Serverless Computing (WoSC) (6 publications), IEEE CLOUD (3 pub-
lications), and USENIX ATC (3 publications). Overall, the venues
span multiple fields, mostly under the umbrella of cloud computing,
but also including such topics as edge or fog computing, service-
oriented computing, distributed systems, Internet of Things, general
software engineering, parallel processing and high-performance
computing. Such heterogeneity results in no clear leader in the
list of preferred venues and indicates that the topic of Faas$ is be-
ing investigated from different angles. A few remarks have to be
added about the Workshop on Serverless Computing, which is ded-
icated explicitly to the topic of serverless computing. Starting from
2017, WoSC was a part of such conferences as IEEE ICDCS, ACM/I-
FIP Middleware, IEEE CLOUD, and IEEE/ACM UCC. While in the
obtained publications’ metadata WoSC was explicitly mentioned
only for one publication (P55), it was implied in several publications
from the final list [31-33]. For example, publications presented at
IEEE ICDCSW 2017 (P23, P25) and UCC 2018 Companion publi-
cations (P44, P52, P54) were actually presented as a part of WoSC
agenda. A large number of papers published via a specialized work-
shop indicates a keen interest of the community in a specialized
venue focused entirely on the topic of serverless computing.

Research strategies. To identify a research strategy, we use the
classification approach by Wieringa et al. [28] due to its relative
simplicity and wide acceptance among researchers [1, 8]. Table 1
and Figure 3 demonstrate the statistics on research strategies.

02016 w2017 m2018 @2019

Evaluation research Philosophical paper

Validation research

Solution proposal

Figure 3. Distribution of research strategies per year

The majority of publications use validation research strategy (42/62),
in which new techniques are described and validated, e.g., via lab
experiments, but not implemented in practice, with prototypes and
lab experiments being the most popular validation approaches for
our chosen topic. Such a large representation of validation research
showecases the strong focus on verifying and confirming the in-
troduced hypotheses and highlights the practical orientation of
research on the topic. The solution proposal (10/62) is the second
popular strategy, in which new solutions or significantly-extended
techniques are proposed, with small examples or good argumen-
tations showing their benefits. One possible reason for presenting
less validated ideas is that FaaS is still relevantly new, with a large
space of open problems and their possible solutions. The evaluation
research (9/62) strategy, i.e., where a technique is implemented and
evaluated in practice, e.g., an industrial case study or experiment
with practitioners, is on the third place. The biggest increase in
evaluation research happens in 2018 and 2019, which might indicate
arising interest for industrial participation in research publications,
also, considering the fact that results for 2019 cover only the first 5
months of the year. Finally, the philosophical paper (1/62) strategy,
which proposes a new way of observing existing concepts, e.g., by
introducing a conceptual framework, is the least frequent research
strategy for the topic of this study.

Main findings: Publication trends

-> Relevant publications first appear in 2016, with
the rapid increase of interest in the next years.

- Conference is the most preferable (68%) venue
type for presenting the research on this topic.

=> The list of venues spans multiple different fields
without a clear leader. At the same time, multi-
ple papers are published via a serverless-specific
workshop, which indicates a keen interest in hav-
ing a dedicated serverless venue.

> Presented research is practice-oriented, with
most concepts (82%) validated/evaluated via pro-
totypes, lab experiments, or case studies.

=> Rising evaluation research numbers, which in-
creased from one publication in 2017 to five in
2018 and three by mid June 2019 might indicate
a keen interest in industrial collaborations.

6 RESULTS: CHALLENGES & DRIVERS (RQ2)

In this section, we present and discuss the main challenges and
drivers for publishing research on engineering FaaS platforms and
tools identified by analyzing the final set of selected scientific pub-
lications. Table 2 shows the distribution of publications with re-
spect to the list of categories defined using the method described
in Section 4. In general, the research challenges are heterogeneous
yet often tightly-coupled and even overlapping. For example, en-
hancement of a function runtime in a FaaS platform might try
tackling multiple challenges simultaneously, e.g., improving the
performance and optimizing costs. Moreover, the described solution
might be simultaneously related to several categories, e.g., secure
execution of functions can be tackled by combining enhanced func-
tion containers (compute resource) with security-optimized API
Gateway, which routes encrypted inputs and outputs (function rout-
ing). To facilitate understanding of the global picture, we also link
the identified challenges with layers of the FaaS platform reference
architecture described in one of the selected publications (P34).

FaaS$ platform reference architecture. One of the selected pub-
lications (P34) introduces the FaaS platform reference architec-
ture [26] consisting of five layers. The Resource layer is the lowest
layer that comprises compute, e.g., virtual machines or containers,
network, and storage resources. Next, the Resource Orchestration
layer manages these resources including such tasks as schedul-
ing and resource allocation. Often, production-ready solutions use
container orchestration platforms for this layer, e.g., Kubernetes.
The Function Management layer is responsible for managing func-
tion’s lifecycle (scaling, deleting instances), maintaining functions
registry, routing I/O, and scheduling executions. The Function Or-
chestration layer is responsible for composing functions, e.g., by
means of workflows. Finally, the DevOps layer groups cross-cutting
concerns such as monitoring or benchmarking and often fits nicely
as a grouping entity for platform-specific tools.

Function execution. The largest segment of selected publications
focuses on various aspects related to function execution in FaaS
platforms. This category groups together multiple closely-related
concepts such as function scheduling, resource allocation and man-
agement, or function runtime, which includes underlying compute
resources, e.g., Docker containers and the actual language runtimes,
e.g., Java Virtual Machine, etc. In the following, we summarize the
challenges and drivers related to this category, with the two largest
categories being related to performance optimizations and security
enhancements as shown in Table 2.

a) Performance optimization. In the context of function execution,
the most frequently-targeted research challenge is performance op-
timization. Essentially, various strategies targeting different layers
of reference architecture are proposed to optimize the performance.
It is worth mentioning that multiple publications which try to op-
timize execution performance, typically, tackle several challenges
simultaneously, e.g., reducing the startup overhead and at the same
time improving performance isolation (P12). One common way of
optimizing execution performance described in multiple works is
to modify or reconsider the underlying compute resource used in ex-
isting Faa$ platforms (e.g., P1, P6, P12, P19, P26). As an option, com-
pute resources are suggested to be (i) enhanced (P1, P19, P26), e.g.,

by improving some internal characteristics of the compute resource,
or (ii) replaced (P6, P12), e.g., run functions using WebAssembly
or Rust language’s runtime instead of containers. One introduced
enhancement for compute resources is to optimize characteristics
of Linux containers (P26), e.g., by using bind-mounts and a pool of
prepared cgroups to speed up the overall startup process. Another
examples include (i) usage of containers only for application-level
isolation (P1), while functions of the same application can have
weaker isolation mechanisms, and (ii) adding a support for GPU-
based computations in Docker containers (P19), which accelerates
compute-intensive jobs, e.g., training deep learning models.

Essentially, the publications trying to reduce function startup over-
head (also by means of optimized compute resources) are implicitly
connected with the cold start problem even if this is not explicitly
stated. This FaaS-specific limitation attracts a lot of attention and
some publications focus exclusively on tackling this problem, e.g.,
by maintaining a pool of warm nodes (P22) or using checkpointing
to optimize JVM cold start overhead (P35). Another solution tackles
the startup overhead by introducing package caching mechanisms
for instantiating pre-initialized Python runtimes (P25).

The next big segment of publications aiming to optimize the func-
tion execution performance is related to function scheduling and
resources allocation. Here, researchers try to optimize resource uti-
lization and reduce response time overhead (e.g., P5, P17, P18, P23,
P32), or minimize the redundant function calls (P56), i.e., multiple
idempotent calls with the same inputs. In some cases, function
scheduler component is implicitly affected as a part of a larger
concept, e.g., to optimize the execution of functions the scheduling
logic has to be adapted (P1). Essentially, researchers focus either
on the function runtime in general (e.g., P9, P11) or on particular
resource types such as CPU (P20) or storage (P46). The majority
of proposed concepts use proactive and predictive (P11, P14, P15,
P20, P28) techniques, which highlights the interest in improved
dynamism of resource orchestration in FaaS platforms. Typically,
proposed function scheduling solutions are implemented on the
function management layer, with the function scheduler component
being the target for changes. As a side note, one scheduling-related
driver (P10) is to support defining custom algorithms in the plat-
form, which can simplify developing new scheduling algorithms.

One of the observations made during the analysis of performance-
focused publications is that traditional operating systems such as
Linux (together with its container virtualization) are considered to
be not efficient enough for the serverless computations. The idea
of implementing a serverless operating system (P2, P21) where the
underlying abstractions are tailored for serverless workloads might
also be considered as an additional confirmation of this observation.

b) Security. The majority of concepts trying to enhance security
properties such as confidentiality, integrity, or accountability, use
Intel SGX (P3, P7, P27, P33), a hardware-backed trusted execution
environment, which can be utilized for running functions in private
memory regions called enclaves. Typically, also the API Gateway is
proposed to be secured as well as the function’s inputs and outputs,
emphasizing the privacy aspects of function interactions. Compos-
ite approaches, e.g., combining Intel SGX and a WebAssembly-based
isolation for function runtime, are also discussed (P27).

Table 2. The connections among selected publications and the defined categories (one publication might simultaneously be related to several categories)

Category Count Total share Publications

Function execution 36/ 62 58%

« Performance 26 /36 P1, P2, P5, P6, P9, P10, P11, P12, P14, P15, P17, P18, P19, P20, P21,
P22, P23, P25, P26, P28, P32, P35, P36, P42, P46, P55

« Security 5/36 P3, P4, P7, P27, P33

« Long-running tasks support 2/36 P16, P30

« Fault tolerance mechanisms 1/36 P38

« Function composition support 1/36 P45

« Language runtime support 1/36 P57

Deployment environments support 6/62 10% P12, P16, P29, P36, P42, P58

Testing & observability 5/62 8% P39, P50, P51, P53, P61

Benchmarking 5/62 8% P37, P41, P44, P52, P56

Costs optimization 5/62 8% P38, P40, P48, P49

Programming models 3/62 5% P24, P45, P54

Research-centric platforms 3/62 5% P10, P13, P31

Deployment automation 2/62 3% P47, P62

Migration 2/62 3% P59, P60

CI/CD pipelines 1/62 2% P43

Reference architecture 1/62 2% P34

¢) Other challenges. This segment comprises challenges that are
tackled less frequently. Several papers focus on tackling the prob-
lem of long-running tasks, e.g., by using Docker’s checkpointing
features to pause/resume such tasks (P16) or by moving the function
with its state, i.e., strong code mobility, to another node for contin-
uing computations when the allowed time limit is reached (P30).
Other challenges include enhancing runtime’s fault tolerance mech-
anisms (P8), supporting function composition (P45), and adding sup-
port for a new language runtime (P57) - in this case allowing to
execute containers based on Docker images in AWS Lambda.

Most solutions related to function execution focus on the Re-
source layer (compute resources), while also affecting the Resource
orchestration and Function Management layers, e.g., by modify-
ing function/resource scheduler of function router components.
Publications focusing on resources allocation mainly concentrate
the efforts on the resource orchestration layer. In rare cases, the
proposed changes affect all layers, e.g., serverless OS or are related
to Function Composition (P45) or DevOps layers (P57).

Deployment environments support. Supporting new deploy-
ment environments, e.g., multi- or hybrid-cloud, edge/fog com-
puting is another challenge, which is also influenced by the ad-
vent of Internet of Things. The properties of FaaS allow using
such platforms for running tasks on edge or IoT devices (P12, P16,
P29, P58), e.g., data pre-processing jobs, but require additional en-
hancements, e.g., supporting pausing/resuming computations for
long-running tasks (P16) to help reducing the power consumption.
Other challenge related to deployment environments is to support
scheduling functions in different target environments, e.g., mul-
tiple cloud providers (P36), where functions can be scheduled in
multiple environments depending on their performance monitored
in real time, or selecting a performance- or cost-optimal cloud ser-
vice model (P42), e.g., FaaS platform or a hosted virtual machine.

The introduced concepts target different architecture layers, e.g.,
DevOps layer (P36, P42) by proposing a new tool, or going more to
platform-specific layers such as Resource, Resource orchestration,
and Function Management layers (P12, P16, P29, P58).

Testing and observability. The publications in this category are
concerned with providing support for testing, debugging, monitor-
ing, and logging of FaaS-based applications. The proposed solutions
target exclusively the DevOps layer, with the majority focusing on
development of a specialized tool. One of the frequent challenges
appearing in identified works is providing means for dependency
tracing (P50, P51, P61). Here, presented works introduce provider-
agnostic (P50) or provider-specific (P51) tools, or focus on the mod-
eling approaches that can be used for tracing the dependencies as
well as, e.g., for testing (P61). Other solutions discuss how to use log-
ging for monitoring and debugging FaaS-based applications (P53)
or how logs can be visualized (P39). All proposed concepts are vali-
dated by means of prototypes that are related to the DevOps layer
of the reference architecture.

Benchmarking. This category includes publications focused on
benchmarking approaches (P37, P41, P44, P52, P56). Typically, the
main target of the proposed benchmarks is the performance and
costs. As a subtype of performance-related benchmarks, the cold
start influencing factors are being benchmarked in one of the stud-
ies (P52). The proposed benchmarks and tools target the DevOps
layer of the reference architecture.

Costs optimization. As a logical follow-up, the cost optimiza-
tion (P38, P40, P48, P49) is a challenge that also attracts the interest
of researchers. The proposed solutions, however, are not always
FaaS-specific, but rather focus on microservices and cloud in gen-
eral. The proposed concepts are implemented exclusively in the
DevOps layer, typically, by introducing a new tool, which might
also implement an introduced model.

Programming models. Another category is related to new pro-
gramming models for Faa$, e.g., retroactive programming for FaaS-
based applications (P24) which allows modifying and replaying
execution histories using event sourcing. Another examples in-
clude formal foundations and serverless programming language for
function orchestration (P45) or visual programming language for
developing FaaS-based applications (P54). Here, the solutions target
the DevOps layer except for the function composition prototype,
which targets platform’s layers up to Function Orchestration layer.

Research-centric platforms. Public availability of the source code
is important, as it helps researchers to avoid reimplementing the
wheel by building on top of working solutions. The challenge of
having an open source and easy to use research platform is high-
lighted in several publications (P10, P13, P31). One example (P10)
aims to allow defining custom scheduling algorithms in the plat-
form, which can simplify developing new scheduling algorithms in
the future. Since the outcome of this challenge is a Faa$S platform, all
platform-specific layers of the reference architecture are affected.

Deployment automation. The topic of deployment automation
is highly-relevant to the serverless application model. The main as-
pects investigated by researchers are how to support modeling, e.g.,
by using cloud modeling languages such as TOSCA or CAMEL [5],
and automate the deployment of the FaaS-based applications using
deployment technologies. The solutions tackling this challenge are
implemented exclusively in the DevOps layer (P47, P62).

Migration. Another category we identified is related to migration
of legacy application to Faa$S service model (P59, P60). Here, the
focus of researchers is how to facilitate faasification of functions in
a chosen application. Identifying FaaS-compatible functionalities
and automating the migration process are interesting topic in this
area. The DevOps layer is used for implementing the concepts,
since the specific tooling is needed that can analyze, extract, and
deploy functions of the application to a Faa$ platform.

CI/CD pipelines. Setting up a working continuous integration
and continuous delivery pipeline is the main subject in one publica-
tion (P43), where the CI/CD pipeline is implemented and evaluated
by means of an industrial case study. The solution is related to the
DevOps layer of the reference architecture.

Main findings: Challenges and drivers

=> Most publications (58%) focus on challenges of func-
tion execution in Faa$ platforms.

-> Function execution performance is the most popular
challenge (42%) discussed in 26 publications with
solutions proposed in different layers of a FaaS plat-
form’s architecture.

- Frequently-used performance optimizations for func-
tion execution include modification of the under-
lying compute resources, function scheduling, and
resources allocation.

=> Multiple challenges are tackled by introducing FaaS-
specific tools, which might indicate a need in extend-
ing FaasS tooling landscape with more tools, e.g., for
testing, benchmarking etc.

7 RESULTS: LINKS WITH INDUSTRY (RQ3)

In this section, we present and discuss the results of data analysis
required to answer the third research question.

Industry participation in research publications. To analyze in-
dustry participation, we record authors’ affiliations and group publi-
cations into three categories, namely academic-only, industry-only
and mixed publications, depending on the presence of a company
names in listed authors’ affiliations as shown in Table 3.

Table 3. Affiliation types in published research

Affiliation type Count Ratio Publications

39/62 g P5, P7, P9, P10, P11, P12,
P13, P14, P15, P17, P19,
P20, P22, P23, P24, P27,
P28, P29, P30, P31, P33,
P36, P37, P40, P41, P42,
P44, P45, P48, P49, P50,
P52, P53, P57, P58, P59,
P60, P61, P62

P2, P3, P4, P6, P8, P16,
P25, P26, P34, P38, P43,
P46, P47, P51, P54, P56
P1, P18, P21, P32, P35,
P39, P55

Academic-only

Mixed 16 / 62 26%

Industry-only 7/62 11%

One of the main finding obtained after analyzing the affiliations
shows that the industrial and mixed contributions constitute more
than one third of the collected publications. In particular, industry-
only (7/62) and mixed (16/62) publications constitute approximately
37% of the total number of publications. Despite the fact that this
topic was initially driven by industry, the companies are interested
in publishing FaaS-related research, with such notable names as
Nokia Bell Labs, IBM Watson Research Center, or Huawei being
among the listed affiliations. This might indicate an opportunity to
increase the amount of evaluation research segment in future by
having more industrial collaborations.

Use of existing FaaS software. To analyze the usage of existing
FaaS software, we counted the number of distinct mentions of exist-
ing Faa$ solutions in the validation and evaluation sections, which
resulted in a general picture on preferred FaaS technologies. Table 4
demonstrates the overall usage statistics for existing Faa$ solutions.
The leading Faa$S platform mentioned either as a part of the imple-
mentation, e.g., benchmarking tool, or as a part of the evaluation is
AWS Lambda (22/62). The second place is taken by Apache Open-
whisk (10/62), an open source FaaS platform which is also used by
IBM in their commercial offering called IBM Cloud Functions (4/62).
Therefore, these two platform choices are strongly-related. The
third place is shared by Microsoft Azure Functions (5/62) and Open-
Lambda (5/62). An interesting point here is that OpenLambda was
originally introduced as a research platform and multiple concepts
are implemented using this platform, which also resonates with the
respective challenge described in Section 6. As seen previously, a
popular open source alternative such as Apache Openwhisk can be

a good choice for evaluating proposed concepts with reduced efforts,
since it is also represented as a commercial offering — IBM Cloud
Functions. FaaS platforms such as Google Cloud Functions (3/62),
Huawei FunctionStage (2/62), OpenFaaS$ (1/62), IronFunctions (1/62)
are mentioned less frequently.

Table 4. Production-ready Faa$ software usage

Name Count Ratio Publications

AWS Lambda 22 /62 36% P4, P9, P23, P31, P36,
P37, P40, P41, P43, P44,
P46, P47, P48, P50, P51,
P53, P54, P57, P59, P60,
P61, P62

Apache 10/ 62 16% P1, P3, P4, P12, P15,

Openwhisk P23, P33, P36, P39, P45

Microsoft Azure 5/62 8% P37, P41, P44, P47, P50

Functions

OpenLambda 5/62 8% P5, P25, P26, P27, P28

IBM Cloud 4/62 7% P36, P37, P41, P55

Functions

Google Cloud 3/62 5% P23, P37, P41

Functions

Huawei 2/62 3% P8, P35

FunctionStage

OpenFaa$S 1/62 2 P56

IronFunctions 1/62 2% P19

Prototypes availability for proposed concepts. After analyz-
ing the descriptions of prototype and evaluation sections, we iden-
tified that 73% (45/62) of publications provide a description of the
prototypical implementation with varying level of details. Table 5
shows the overall statistics on the description and accessibility of
the prototypical implementations. However, out of these 45 publi-
cations, slightly more than a half (23/45 or 51%) provide an acces-
sible link to the source code, with most of them being hosted on

Table 5. Description and accessibility of prototypical implementations

Status Count Ratio Publications

Prototype 45/ 62 73% P1, P3, P4, P5, P7, P10, P12,

described P13, P14, P15, P16, P19, P20,
P22, P23, P24, P27, P28, P31,
P32, P33, P35, P36, P37, P38,
P39, P41, P44, P45, P46, P47,
P48, P49, P50, P51, P53, P54,
P55, P56, P57, P58, P59, P60,
P61, P62

Prototype 23/ 62 37% P4,P5,P10,P23,P24, P31, P37,

accessible P38, P39, P41, P44, P46, P47,

P48, P49, P53, P54, P57, P58,
P59, P60, P61, P62

14%
Industry-only
71%

Prototype accessible

31%

Mixed u Prototype described

4%
Academic-only

80%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 4. Prototype description and accessibility per affiliation type

Github. While slightly more than half of the described prototypes
are available, our observation demonstrates that in many cases
reuse or verification of proposed concepts is not directly possible,
as it requires additional efforts, i.e., contacting the authors, and
might not be feasible at all in cases when the concepts have to
be reimplemented from scratch. Figure 4 demonstrates the ratio
between described and accessible prototypes per affiliation type. It
is easy to notice that less than half of publications actually provide
prototype links regardless of affiliation type. Although prototypes
might be less relevant depending on the publication type, e.g., so-
lution proposals or philosophical papers will less likely provide a
prototypical implementation, in our dataset most publications are
either validation or evaluation research publications. During the
data extraction phase, we observed that a fair amount of papers
focusing on the evaluation of proposed concepts, e.g., by means of
performance measurements, while highlighting various technical
details of implemented prototypes and evaluation setups tend to
omit prototype links; however, further investigation of potential
correlations related to this issue was not in the scope of this work.

Main findings: Connections with industry

= More than one third of publications (37%) are
authored together with industrial partners.

- The most popular Faa$ platform used in valida-
tions and evaluations is AWS Lambda (mentioned
in 36% of publications).

= The second most popular option is Apache Open-
whisk (16%), which might be helpful for research
prototypes, as it is also used in a commercial of-
fering from IBM.

= While 73% of the publications describe prototyp-
ical implementations, roughly half of them are
accessible and can be verified or reused.

8 THREATS TO VALIDITY

To assess the quality of our systematic study, we used the guidelines
for computing the score described by Petersen et al. [23]. The main
idea is to follow the described checklist and compute the ratio of
the applied activities compared to the total number of suggested

activities in the checklist. The total score in our case is equal to
58%, which is considered to be a good score for systematic mapping
studies, with the median value for such studies in the literature
being 33% [8]. In this section, we reflect on the methodology of this
study and discuss potential threats to validity and the measures we
applied to mitigate these threats.

Selection bias. To tackle one of the main threats to this study, i.e.,
if the primary set of publications is not representative enough, we
used a multi-phase search strategy with initial search conducted
against six well-established electronic research databases. The ini-
tial search was performed using corresponding databases’ search
engines and based on the publication’s meta-data including abstract,
title, and author-defined keywords. One possible threat here is to
miss studies that do not explicitly have any of the used search terms
in their meta-data. To mitigate this risk, we intentionally defined
the search string using only high-level, generic keywords to reduce
the amount of false negatives, which resulted in a relatively-large
size of the initial dataset compared to the final dataset’s size. In ad-
dition, the search strategy also included the forward and backward
snowballing to increase the final set of primary publications. Dur-
ing the next phases, we used a deterministic set of selection criteria,
which was initially validated before starting this study in a set of
trial runs and refined based on the obtained results. To decrease the
number of false negatives, we also used adaptive reading depth [23]
in cases when it was not possible to determine the relevance of
the study based only on title and abstract. The study selection was
separately performed by three researchers, with the consecutive
resolution of conflicts until the consensus was reached. There were
no cases, when the agreement was not reached.

Data extraction and internal validity. Laborious and tedious
data extraction process can pose another important threat to this
study, namely a potential inaccuracy in data extraction. To mit-
igate this threat, we defined our research protocol based on the
well-established guidelines [14, 22, 23] and existing published sys-
tematic mapping studies [7, 8]. As one of the important steps for
extracting the data relevant to the set of predefined research ques-
tions, we designed data extraction forms to facilitate the analysis
and synthesis of the information needed for answering these ques-
tions. The designed classification framework was iteratively refined
using a keywording technique while the existing related work was
carefully taken into consideration. The extraction and synthesis
of the data was partially automated, especially in the error-prone
parts, e.g., where the list of the publications related to a certain cate-
gory had to be retrieved. The data extraction process was conducted
by two researchers, one being the main data extractor, whereas
the second was verifying the extracted data. In cases of any dis-
agreements, researchers resolved them via discussions to ensure
the correctness of the extracted data.

Reproducibility. To facilitate the reproducibility and verifiability
of this study, we carefully documented all steps of our search and
selection strategy, and made our results publicly-available. However,
there is a potential threat related to the reproducibility aspect. The
search engines of the electronic research databases typically do not
provide public web APIs for automating the search and offer varying
sets of features, e.g., export of the results in specific formats such as

.bib is not supported by Springer Link. Thus, the results obtained
during the initial search require significant post-processing efforts,
either manual or required for automating the entire process.

External validity. We designed our study focusing on a combi-
nation of peer-reviewed academic works and pre-prints available
via arXiv.org, which makes it possible to generalize our work only
for these types of publications. We did not intend to include gray
literature in a form of blog posts as well as the industrial efforts
not published via academic research channels. This decision was
motivated by the fact that relevant entries might not be available
due to the high dynamics of such data sources [16], which might
increase the chance of introducing systematic errors and affecting
the overall quality of the mapping study [9].

9 CONCLUSION

In this work, we investigate which challenges and drivers motivate
researchers to engineer new or extend existing FaaS platforms and
platform-specific tools, as formulated in Section 1. We split this
research question into three sub-questions and addressed them by
synthesizing the data extracted from 62 publications obtained using
a systematic multiphase search and selection process. In the first
research question we analyzed the publication trends on the topic
of Faa$ platforms and tools engineering. The initial works on the
topic appear in 2016, with the significant increase in number of
publications in 2018. Most works are being presented at conferences
and the list of chosen venues spans multiple different domains.
Presented concepts are often validated, and there is an increasing
number of evaluation research involving companies, which serves
as an indicator of a practice-orientation of the topic.

In the second research question, we classified publications based
on the challenges and drivers motivating researchers to engineer
new or extend existing Faa$S platforms and tools. Essentially, the
challenges tackled by researchers are heterogeneous and target
different layers of the FaaS platform. The majority of works focus
on optimizing the performance of function execution aspects using
various strategies, e.g., optimize or replace function runtime, im-
prove function scheduling and resources allocation. Multiple works
focus on challenges that require introducing new FaaS tools, e.g.,
for benchmarking FaaS providers, for testing and monitoring, or
automating the deployment of FaaS-based applications.

The third research question focused on how industry is connected
with the published research. More than one third of publications
have one author with an industrial affiliation, which indicates a
strong industrial influence on the topic. Multiple proposed concepts
also rely on the production-ready solutions either for validation or
evaluation purposes, with AWS Lambda being the most popular one.
While a significant segment of publications describes the details on
prototypical implementations of the proposed concepts, roughly
a half of them provides an accessible link, which complicates the
process of reusing and verifying them.

ACKNOWLEDGMENTS

This work is partially funded by the European Union’s Horizon 2020
research and innovation project RADON (825040). We would also
like to thank the anonymous referees, whose insightful feedback
helped to improve this paper.

Appendix A THE FINAL LIST OF SELECTED PUBLICATIONS

ID Authors Publication Title Year
P1 Akkusetal. SAND: Towards High-performance Serverless Computing 2018
P2 Al-Alietal Making Serverless Computing More Serverless 2018
P3 Alderetal S-FaaS: Trustworthy and Accountable Function-as-a-Service using Intel SGX 2018
P4 Alpernas et al. Secure Serverless Computing Using Dynamic Information Flow Control 2018
P5 Aumalaetal Beyond Load Balancing: Package-Aware Scheduling for Serverless Platforms 2019
P6 Boucher et al. Putting the "Micro" Back in Microservice 2018
P7 Brenner and Kapitza Trust More, Serverless 2019
P8 Chanetal BalloonJVM: Dynamically Resizable Heap for Faa$S 2019
P9 Christoforou and Andreou An effective resource management approach in a FaaS environment 2018
P10 Danayi and Sharifian openCoT: The opensource Cloud of Things platform 2019
P11 Danayi and Sharifian PESS-MinA: A Proactive Stochastic Task Allocation Algorithm for FaaS Edge-Cloud environments 2018
P12 Hall and Ramachandran An Execution Model for Serverless Functions at the Edge 2019
P13 Hendrickson et al. Serverless Computation with openLambda 2016
P14 HoseinyFarahabady et al. A QoS-Aware Resource Allocation Controller for Function as a Service (FaaS) Platform 2017
P15 HoseinyFarahabady etal. A Model Predictive Controller for Managing QoS Enforcements and Microarchitecture-Level 2018
Interferences in a Lambda Platform
P16 Karhula et al. Checkpointing and Migration of IoT Edge Functions 2019
P17 Kesidis Temporal Overbooking of Lambda Functions in the Cloud 2019
P18 Kim and Cha Design of the Cost Effective Execution Worker Scheduling Algorithm for FaaS Platform 2018
Using Two-Step Allocation and Dynamic Scaling
P19 Kimetal GPU Enabled Serverless Computing Framework 2018
P20 Kimetal Dynamic Control of CPU Usage in a Lambda Platform 2018
P21 Koller and Williams Will Serverless End the Dominance of Linux in the Cloud? 2017
P22 Lin and Glikson Mitigating Cold Starts in Serverless Platforms: A Pool-Based Approach 2019
P23 McGrath and Brenner Serverless Computing: Design, Implementation, and Performance 2017
P24 Meissner et al. Retro-A: An Event-sourced Platform for Serverless Applications with Retroactive Computing Support 2018
P25 Oakes et al. Pipsqueak: Lean Lambdas with Large Libraries 2017
P26 Oakes et al. SOCK: Rapid Task Provisioning with Serverless-optimized Containers 2018
P27 Qiangetal. Se-Lambda: Securing Privacy-Sensitive Serverless Applications Using SGX Enclave 2018
P28 Saha and Jindal EMARS: Efficient Management and Allocation of Resources in Serverless 2018
P29 Soltani et al. Towards Distributed Containerized Serverless Architecture in Multi Cloud Environment 2018
P30 Soltani et al. A Migration-based Approach to execute Long-Duration Multi-Cloud Serverless Functions. 2018
P31 Spillner Snafu: Function-as-a-Service (FaaS) Runtime Design and Implementation 2017
P32 Stein The Serverless Scheduling Problem and NOAH 2018
P33 Trachetal Clemmys: Towards Secure Remote Execution in Faa$S 2019
P34 vanEyketal A SPEC RG Cloud Group’s Vision on the Performance Challenges of FaaS Cloud Architectures 2018
P35 Wangetal Replayable Execution Optimized for Page Sharing for a Managed Runtime Environment 2019
P36 Aske and Zhao Supporting Multi-Provider Serverless Computing on the Edge 2018
P37 Back and Andrikopoulos Using a Microbenchmark to Compare Function as a Service Solutions 2018
P38 Bozaetal. Reserved, on demand or serverless: Model-based simulations for cloud budget planning 2017
P39 Chang and Fink Visualizing serverless cloud application logs for program understanding 2017
P40 Elgamal Costless: Optimizing Cost of Serverless Computing through Function Fusion and Placement 2018
P41 Figiela et al. Performance evaluation of heterogeneous cloud functions 2018
P42 Horovitz et al. FaaStest - Machine Learning Based Cost and Performance FaaS Optimization 2019
P43 Ivanov and Smolander Implementation of a DevOps Pipeline for Serverless Applications 2018
P44 Jackson and Clynch An Investigation of the Impact of Language Runtime on the Performance and Cost of Serverless Functions 2018
P45 Jangdaetal. Formal Foundations of Serverless Computing 2019
P46 Klimovic et al. Pocket: Elastic Ephemeral Storage for Serverless Analytics 2018
P47 Kiritikos and Skrzypek Towards an Optimized, Cloud-Agnostic Deployment of Hybrid Applications 2019
P48 Kuhlenkamp and Klems Costradamus: A Cost-Tracing System for Cloud-Based Software Services 2017
P49 Leitner et al. Modelling and managing deployment costs of microservice-based cloud applications 2016
P50 Linetal Tracing Function Dependencies across Clouds 2018
P51 Linetal Tracking Causal Order in AWS Lambda Applications 2018
P52 Manner et al. Cold Start Influencing Factors in Function as a Service 2018
P53 Manner et al. Troubleshooting Serverless functions: a combined monitoring and debugging approach 2019
P54 Moczurad and Malawski Visual-Textual Framework for Serverless Computation: A Luna Language Approach 2018
P55 Nadgowda et al. The Less Server Architecture for Cloud Functions 2017
P56 Pellegrini et al. Function-as-a-Service Benchmarking Framework 2019
P57 Pérez et al. Serverless computing for container-based architectures 2018
P58 Pinto et al. Dynamic Allocation of Serverless Functions in IoT Environments 2018
P59 Spillner Transformation of Python Applications into Function-as-a-Service Deployments 2017
P60 Spillner and Dorodko Java Code Analysis and Transformation into AWS Lambda Functions 2017
P61 Winzinger and Wirtz Model-based analysis of serverless applications 2019
P62 Wurster et al. Modeling and Automated Deployment of Serverless Applications Using TOSCA 2018

REFERENCES

(1]

[10

[11

[12

(14

[15]

[16

Nuha Alshugayran, Nour Ali, and Roger Evans. 2016. A systematic mapping
study in microservice architecture. In 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA). IEEE, 44-51.

Amazon Web Services, Inc. 2019. AWS Lambda. https://aws.amazon.com/lambda
Amazon Web Services, Inc. 2019. AWS Lambda Releases History. https:
//docs.aws.amazon.com/lambda/latest/dg/history.html

Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slomin-
ski, et al. 2017. Serverless computing: Current trends and open problems. In
Research Advances in Cloud Computing. Springer, 1-20.

Alexander Bergmayr et al. 2018. A Systematic Review of Cloud Modeling Lan-
guages. ACM Comput. Surv. 51, 1, Article 22 (Feb. 2018), 38 pages. https:
//doi.org/10.1145/3150227

Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2018. Migrating to-
wards microservice architectures: an industrial survey. In 2018 IEEE International
Conference on Software Architecture (ICSA). IEEE, 29-2909.

Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2019. Architecting with
microservices: A systematic mapping study. Journal of Systems and Software 150
(2019), 77-97.

Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. 2017. Research on ar-
chitecting microservices: trends, focus, and potential for industrial adoption. In
2017 IEEE International Conference on Software Architecture (ICSA). IEEE, 21-30.
Abdessalam Elhabbash, Faiza Samreen, James Hadley, and Yehia Elkhatib. 2019.
Cloud Brokerage: A Systematic Survey. ACM Computing Surveys (CSUR) 51, 6
(2019), 119.

Geoffrey C Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski.
2017. Status of serverless computing and function-as-a-service (faas) in industry
and research. arXiv preprint arXiv:1708.08028 (2017).

P. Garcia Lopez, M. Sanchez-Artigas, G. Paris, D. Barcelona Pons, A. Ruiz Ol-
lobarren, and D. Arroyo Pinto. 2018. Comparison of FaaS Orchestration Sys-
tems. In 2018 IEEE/ACM International Conference on Utility and Cloud Com-
puting Companion (UCC Companion). 148-153. https://doi.org/10.1109/UCC-
Companion.2018.00049

Javad Ghofrani and Daniel Liibke. 2018. Challenges of Microservices Architecture:
A Survey on the State of the Practice.. In ZEUS. 1-8.

Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless com-
puting: One step forward, two steps back. arXiv preprint arXiv:1812.03651 (2018).
Barbara Kitchenham and Pearl Brereton. 2013. A systematic review of system-
atic review process research in software engineering. Information and software
technology 55, 12 (2013), 2049-2075.

H. Lee, K. Satyam, and G. Fox. 2018. Evaluation of Production Serverless Comput-
ing Environments. In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). 442-450.

Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer. 2019. A
mixed-method empirical study of Function-as-a-Service software development

[17

[18

[19

[20
[21

[22

[23

[24

[25

[26

[27

[28]

[29

[30

[31

[32

[33

[34

in industrial practice. Journal of Systems and Software 149 (2019), 340-359.

T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha. 2017. A Preliminary Review
of Enterprise Serverless Cloud Computing (Function-as-a-Service) Platforms. In
2017 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). 162-169.

Peter M. Mell and Timothy Grance. 2011. SP 800-145. The NIST Definition of Cloud
Computing. Technical Report. Gaithersburg, MD, United States.

Microsoft. 2019. Microsoft Azure Functions. https://azure.microsoft.com/en-
us/services/functions

OpenFaa$ Ltd. 2019. OpenFaaS. https://www.openfaas.com

Claus Pahl and Pooyan Jamshidi. 2016. Microservices: A Systematic Mapping
Study.. In CLOSER (1). 137-146.

Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. System-
atic mapping studies in software engineering.. In Ease, Vol. 8. 68-77.

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology 64 (2015), 1-18.

Mubashra Sadagat, Ricardo Colomo-Palacios, and Lars Emil Skrimstad Knudsen.
2018. Serverless computing: a multivocal literature review. (2018).

The Apache Software Foundation. 2019. Apache OpenWhisk. https://openwhisk.
apache.org

Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, and
Simon Eismann. 2018. A SPEC RG Cloud Group’s Vision on the Performance
Challenges of FaaS Cloud Architectures. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (ICPE ’18). ACM, New York,
NY, USA, 21-24.

Erwin van Eyk, Alexandru Iosup, Simon Seif, and Markus Thémmes. 2017. The
SPEC Cloud Group’s Research Vision on FaaS and Serverless Architectures. In
Proceedings of the 2Nd International Workshop on Serverless Computing (WoSC
’17). ACM, New York, NY, USA, 1-4.

Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. 2006. Require-
ments engineering paper classification and evaluation criteria: a proposal and a
discussion. Requirements engineering 11, 1 (2006), 102-107.

Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software engineering. Citeseer, 38.
Claes Wohlin, Per Runeson, Martin Hést, Magnus C Ohlsson, Bjérn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

WoSC. 2017. First International Workshop on Serverless Computing (WoSC).
https://www.serverlesscomputing.org/wosc17

WoSC. 2018. Fourth International Workshop on Serverless Computing (WoSC).
https://www.serverlesscomputing.org/wosc4

WoSC. 2018. Third International Workshop on Serverless Computing (WoSC).
https://www.serverlesscomputing.org/wosc3

Vladimir Yussupov, Uwe Breitenbiicher, Frank Leymann, and Michael Wurster.
2019. Systematic mapping study on engineering Faa$S platforms and tools. https:
//doi.org/10.5281/zenodo.3520163

https://aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/history.html
https://docs.aws.amazon.com/lambda/latest/dg/history.html
https://doi.org/10.1145/3150227
https://doi.org/10.1145/3150227
https://doi.org/10.1109/UCC-Companion.2018.00049
https://doi.org/10.1109/UCC-Companion.2018.00049
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://www.openfaas.com
https://openwhisk.apache.org
https://openwhisk.apache.org
https://www.serverlesscomputing.org/wosc17
https://www.serverlesscomputing.org/wosc4
https://www.serverlesscomputing.org/wosc3
https://doi.org/10.5281/zenodo.3520163
https://doi.org/10.5281/zenodo.3520163

	Abstract
	1 Introduction
	2 Fundamentals
	3 Related Work
	4 Study Design
	4.1 Research Questions
	4.2 Data Sources and Search Strategy
	4.3 Data Extraction and Synthesis
	4.4 Information Management and Reproducibility of the Study

	5 Results: Publication Trends (RQ1)
	6 Results: Challenges & Drivers (RQ2)
	7 Results: Links with Industry (RQ3)
	8 Threats to Validity
	9 Conclusion
	Acknowledgments
	A The final list of selected publications
	References

