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Abstract: The diversity of available cloud service models yields multiple hosting variants for application components.
Moreover, the overall trend of reducing control over the infrastructure and scaling configuration makes it non-
trivial to decide which hosting variant suits more a certain software component. In this work, we introduce
a spectrum of component hosting patterns that covers various combinations of management responsibilities
related to (i) the deployment stack required by a given component as well as (ii) required infrastructure re-
sources and component’s scaling rules. We validate the presented patterns by identifying and showing at least
three real world occurrences of each pattern following the well-known Rule of Three.

1 INTRODUCTION

A plethora of available cloud service models en-
ables building cloud applications using components
hosted on various targets that require different man-
agement efforts. For example, cloud consumers can
control lower-level infrastructure layers when hosting
components using Infrastructure-as-a-Service (IaaS).
Another option is to simply select an appropriate
runtime when hosting components on Platform-as-a-
Service (PaaS) or Function-as-a-Service (FaaS). In-
between, Container-as-a-Service (CaaS) offerings fa-
cilitate hosting containerized components.

Such a diversity of hosting options allows flexibly
outsourcing management responsibilities, e.g., host-
ing certain components on provider-managed offer-
ings to minimize management efforts. Further extend-
ing this idea, the serverless computing paradigm (Bal-
dini et al., 2017) focuses on developing applications
comprising provider-managed components. The term
serverless emphasizes a weaker role of processing,
storage, and network resources for cloud consumers,
as providers manage the underlying infrastructure,
e.g., a FaaS platform and components it depends on.
Serverless computing differs from its serverful coun-
terpart in several aspects, namely (i) decoupling of
computation and storage, (ii) code is executed with-
out requiring consumers to allocate resources, and
(iii) finer-grained pricing which focuses on the re-
sources actually consumed (Jonas et al., 2019).

As a result, cloud consumers need to choose from
component hosting variants with different manage-
ment responsibilities. Typical questions that arise are
“How to host a component requiring custom runtime
and scaling rules?”, or “How to host a periodically-
invoked code snippet?”. Unfortunately, currently
there exist no well-structured guidelines for deciding
on component hosting options. One instrument that
can help in such cases is a pattern, since it describes
a proven and abstract solution to a specific and fre-
quently reoccurring problem (Alexander, 1977). Mul-
tiple pattern languages group solutions for certain do-
mains, e.g., cloud computing (Fehling et al., 2014a),
or enterprise integration patterns (Hohpe and Woolf,
2004). Hence, hosting-specific patterns could help
making informed decisions about component hosting.

In this work, we introduce component hosting pat-
terns which describe proven solutions for hosting ap-
plication components. They cover different combi-
nations of management responsibilities related to two
aspects: (i) deployment stack and (ii) scaling config-
uration management. Here, the former describes to
what extent cloud consumers can manage the under-
lying infrastructure and required software dependen-
cies, whereas the latter is related to who is responsi-
ble for allocating infrastructure resources and defin-
ing scaling rules. Furthermore, we show how these
patterns form a spectrum of hosting options, rang-
ing from mainly consumer-managed, “serverful” to
mainly provider-managed, “serverless” variant.



2 PATTERN PRIMITIVES

In this section, we introduce the pattern primitives re-
lated to the domain of application deployment.
Application: An application is a collection of soft-
ware components interacting with each other and ex-
ternal clients to provide a certain business function-
ality (Lau and Wang, 2007). Software components
are typically installed and run on a specific infras-
tructure including processing, storage, and network
resources (Messerschmitt, 2007). Depending on the
chosen architectural style, software components can
be coupled differently, e.g., remote procedure calls or
messaging-based integration, which also influences to
what extent the infrastructure can be shared among
software components of the application.
Software Component: A software component is an
application building block implementing functionali-
ties required by an application (Councill and Heine-
man, 2001; Lau and Wang, 2007). Depending on
their purpose, software components can be general-
purpose or application-specific. General-purpose
components provide functionalities not specific to a
given application, e.g., a web server or a message-
oriented middleware. Application-specific compo-
nents implement part of the application’s business
logic, e.g., a Java-based e-commerce component.
Deployment Artifact: A deployment artifact is a
software component packaged in a format required
by a chosen deployment stack (OASIS, 2015). Exam-
ples of deployment artifacts are Docker container im-
ages packaging software components to host them on
the Docker Engine, or packaging Java applications as
Java Web application ARchives (WARs) to host them
on application servers like JBoss.
Deployment Stack: A deployment stack is a valid
combination of software components and infrastruc-
ture components (i.e., processing, storage, and net-
work resources) that allows hosting a given deploy-
ment artifact. It is important to note that the same
deployment artifact can be hosted on different de-
ployment stacks. For example, a deployment arti-
fact of type “Java ARchive” (JAR) can be hosted
on a FaaS platform by selecting a suitable Java run-
time, or by manually installing the Java runtime on
a virtual machine provisioned using IaaS offerings.
Figure 1 shows three valid deployment stacks for
JAR files using service offerings from Amazon. The
Stack #1 relies on AWS EC2, Amazon’s IaaS offer-
ing, which allows cloud consumers to customize the
deployment stack by installing any software compo-
nents on the chosen virtual machine. Stack #2 shifts
some management responsibilities to the provider,
since the underlying container engine is provider-
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Figure 1: Different stacks for hosting a JAR on Amazon.

managed. However, cloud consumers are still able
to customize the runtime environment by installing
necessary software components as a part of the con-
tainer. Finally, Stack #3 is managed mainly by Ama-
zon, since cloud consumers only select a compati-
ble provider-defined deployment stack, i.e., enabling
Java8 in this case. Since deployment stacks might
comprise provider-managed or consumer-managed
components, the management efforts needed for the
same deployment artifact differ depending on the cho-
sen deployment stack. Furthermore, a scaling config-
uration for a given component that defines infrastruc-
ture resources and scaling rules needs to be managed
too – either by cloud consumers or cloud providers.
Consumer-managed Component: A component in
deployment stack is consumer-managed if cloud con-
sumers, e.g., application developers or operators, are
responsible for managing it, e.g., installation, config-
uration, and dependency management. For example,
in the Stack #2 from Figure 1, a Java runtime is in-
stalled as a part of a container image hosted on AWS
ECS: while the underlying container engine is man-
aged by the provider, the Java runtime is installed
and configured by the cloud consumer. Similarly, if
an operating system is consumer-managed as in the
Stack #1 in Figure 1, cloud consumers are respon-
sible for installing and configuring software compo-
nents hosted on it, e.g., a NoSQL database.
Provider-managed Component: A provider-
managed stack component is managed by providers.
For example, a Java runtime selected in PaaS
and FaaS offerings is provider-managed since the
provider is responsible for installing and configuring
the deployment stack required to run this runtime.
Scaling Configuration: A scaling configuration is a
combination of component’s scaling rules, e.g., hor-
izontal vs. vertical scaling, and the amount of in-
frastructure resources that is required for hosting a
given software component. As mentioned previously,
a scaling configuration can be consumer-managed or
provider-managed. For example, in the Stack #1
cloud consumers need to define the size of a virtual
machine and the corresponding scaling rules, whereas
in the Stack #3 the provider is responsible for allocat-
ing resources and scaling hosted functions.



3 APPLICATION COMPONENT
HOSTING PATTERNS

In this section, we introduce the application compo-
nent hosting patterns. Before discussing each pat-
tern, we describe how patterns are aligned with each
other, forming a spectrum of different hosting vari-
ants. Next, we describe how patterns are structured,
and provide the in-detail definitions for each pattern.

3.1 A Spectrum of Hosting Patterns

Depending on the chosen cloud offering, both cloud
providers and cloud consumers can be responsible
for managing the underlying deployment stack, e.g.,
cloud consumers have more deployment stack man-
agement responsibilities when using IaaS in compar-
ison with PaaS or FaaS. Moreover, the cloud offer-
ing choice also defines who manages the scaling con-
figuration, e.g., providers are responsible for allocat-
ing infrastructure resources and scaling component
instances in FaaS and certain CaaS offerings. Figure 2
shows a spectrum of component hosting patterns cov-
ering combinations of deployment stack and scaling
configuration management responsibilities. To mark
the spectrum’s extremes, we use the terms server-
ful and serverless which emphasize the stronger or
weaker role of processing, storage, and network re-
sources for cloud consumers, respectively.

The most consumer-managed hosting option
in Figure 2 is the Serverful Hosting Pattern (see Sec-
tion 3.3) as it enables consumers to have full con-
trol over the deployment stack and scaling configu-
ration including provisioning the desired infrastruc-
ture, installing software components, and defining
component’s scaling rules. A more simplified option
is the Consumer-managed Container Hosting Pat-
tern (see Section 3.4) in which the deployment stack
required for running containers needs to be man-
aged to a lesser extent, e.g., provider-managed con-
tainer orchestrators which require scaling configura-
tion to define infrastructure needed for running con-
tainers. Since container images serve as deployment
artifacts, consumers can customize software compo-
nents in such deployment stacks.

The next three patterns are more related to
serverless-style component hosting as they are
provider-managed in at least one of the aforemen-
tioned aspects. In the Provider-defined Stack Host-
ing Pattern (see Section 3.5), a deployment stack
is provider-managed, but consumers need to man-
age the scaling configuration, e.g., Database-as-a-
Service or PaaS offerings that require defining in-
frastructure resources for respective software compo-
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Figure 2: A spectrum of component hosting patterns cover-
ing different combinations of deployment stack and scaling
configuration management responsibilities.

nents. In the Provider-managed Container Hosting
Pattern (see Section 3.6), consumers no longer man-
age scaling configuration, i.e., providers allocate in-
frastructure resources required for running contain-
ers. Deployment stack management is also reduced:
consumers can only modify the runtime environment
via custom container images. Finally, the Server-
less Hosting Pattern (see Section 3.7) apart from
the provider-managed deployment stack also reduces
the management overhead for scaling configuration,
since providers are responsible for it, e.g., code snip-
pets hosted using Function-as-a-Service (FaaS).

3.2 Patterns Structure

The patterns presented in the next subsections are
structured following the best practices employed
by researchers and practitioners (Alexander, 1977;
Buschmann et al., 2007; Coplien, 1996; Gamma et al.,
1995; Fehling et al., 2014a; Wellhausen and Fiesser,
2011; Richardson, 2018; Endres et al., 2017). Each
component hosting pattern has a name and a catchy
icon to simplify memorability. The problem and con-
text are described in the eponymous paragraphs. In-
fluencing factors that characterize the problem are de-
scribed in the forces paragraph. The solution para-
graph describes a possible solution with a solution
sketch, and the example paragraph discusses a simple
example of this pattern implementation using a ToDo
list application in which a Java application stores and
modifies to-do items in a NoSQL database. The re-
sult paragraph discusses the resulting context after
the pattern is applied, and the known uses paragraph
presents at least three real-world occurrences of the
pattern implementation to demonstrate that the Rule
of Three (Coplien, 1996) holds, hence, making the
introduced pattern valid.



3.3 Serverful Hosting Pattern

Problem: How to host a software
component while retaining control
over all deployment stack components
and the scaling configuration?

Context: A software component needs to be hosted
on a custom deployment stack with possibly nested
software layers such that the cloud consumer is able to
define the infrastructure resources and scaling rules.
Forces: To choose the right deployment stack for a
software component, cloud consumers need to under-
stand the advantages and drawbacks of cloud service
models and the corresponding management efforts.
Other factors such as the chosen architectural style
also affect the suitability of deployment stacks, e.g.,
hosting a monolith with many custom requirements
vs. hosting a fine-grained microservice.
Solution: Host software components on a deploy-
ment stack primarily managed by cloud consumers
which enables hosting all required components, e.g.,
an operating system and a web server on top of it.
Hence, for a given deployment artifact type, the cloud
consumer is responsible for installing an appropriate
operating system and runtime environment. The cho-
sen operating system either runs on a virtual machine,
e.g., using IaaS offerings, or on a physical server, e.g.,
on premises or using bare metal cloud offerings. A
solution sketch in Figure 3 shows a software compo-
nent hosted on a deployment stack in which the cloud
consumer is responsible for hosting the infrastruc-
ture components and managing scaling configuration.
Hence, in the presented solution sketch the user is re-
sponsible for keeping track of all components in the
stack to successfully complete the deployment, e.g.,
installing and running required dependencies.

Example: Figure 3 shows a simplified Java-based
ToDo list application that stores to-do items in a
NoSQL database hosted on the IaaS offering from
AWS. Most components in the chosen deployment
stack are managed by the cloud consumer. Another
deployment stack variant could use a bare metal cloud
offering instead of IaaS, allowing cloud consumers to
also control the underlying hypervisor.
Result: When applied, this hosting pattern provides
the highest degree of control over the deployment
stack and scaling configuration. The provisioned in-
frastructure and all deployed components are man-
aged and configured by cloud consumers. This allows
fine-tuning each deployed component in the stack and
enables manual integration with other components
possibly deployed using more provider-managed of-
ferings. However, since providers are not aware of
all installed components in such deployment stacks,
ensuring that the component is running and available
becomes an additional responsibility for cloud con-
sumers. An example of such additional effort would
be providing a healthcheck configuration, e.g., AWS
Elastic Load Balancing allows defining health check
rules that allow it to control instances’ health status.
Known Uses: Multiple IaaS offerings enable imple-
menting this pattern, e.g., AWS EC2 (Amazon Web
Services, 2021c), Azure IaaS (Microsoft, 2021d),
and Google Compute Engine (Google, 2021c)
enable provisioning virtual machines for hosting
components and their dependencies, while cloud
consumers are responsible for scaling configuration.
Moreover, cloud providers offer bare metal servers,
e.g., IBM Cloud Bare Metal Servers (IBM, 2021a)
allows provisioning dedicated physical machines to
set up any number of infrastructure layers for hosting
desired application components that can be managed
by consumers afterwards.
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Figure 3: A solution sketch (a) and an example deployment (b) for the Serverful Hosting Pattern.



3.4 Consumer-managed Container
Hosting Pattern

Problem: How to host a software
component while managing only the
runtime environment it runs on and the
scaling configuration?

Context: A software component needs to be hosted
such that its runtime environment is customizable,
and the cloud consumer is responsible for managing
the component’s scaling configuration.
Forces: Containers help reducing the infrastructure
costs and simplify software deployment. Moreover,
provisioning tasks require additional technical exper-
tise, e.g., network configuration, shifting the focus
from business logic to infrastructure. At the same
time, managing the component’s runtime environ-
ment and scaling configuration might still be desired,
e.g., add pre-installed proprietary libraries and fine-
tune scaling rules for container instances.
Solution: Host software components on a deploy-
ment stack with provider-managed container engines
or container orchestrators that allow managing scaling
configuration. Figure 4 shows the solution sketch in
which a containerized software component is hosted
on a provider-managed container engine. Here,
providers are responsible for deploying and managing
the infrastructure for running containers, e.g., con-
tainer orchestrator such as Kubernetes offered as a
service. The cloud consumer must provide a container
image encompassing the application component and
its dependencies. Moreover, the cloud consumer is
responsible for the scaling configuration including al-
location of infrastructure resources used by container
engine and the definition of scaling rules.

Example: Figure 4 shows a ToDo list application
from Section 3.3 hosted on the managed Kubernetes
service from AWS. Only the runtime environment
in this deployment stack is managed by the cloud
consumer as a part of the provided container image.
Moreover, the consumer is responsible for the scal-
ing configuration, including the required infrastruc-
ture resources and scaling rules.
Result: After applying this hosting pattern, the lower-
level infrastructure layers in the deployment stack are
managed by providers, although cloud consumers can
manage the scaling configuration and runtime envi-
ronment by defining custom container images with
required dependencies. While the degree of control
is reduced, users are still able to introduce modifica-
tions to the deployment stack and manage the hosted
component, which makes this pattern a less demand-
ing variant for hosting containerized components.
Known Uses: Managed container orchestrators such
as Kubernetes-as-a-Service offerings are available
in multiple public clouds, including such examples
as IBM Cloud Kubernetes Service (IBM, 2021b),
Azure Kubernetes Service (Microsoft, 2021e), and
AWS Elastic Kubernetes Service (Amazon Web Ser-
vices, 2021f). While managed Kubernetes offer-
ings might vary significantly feature-wise, the over-
all goal to have a managed Kubernetes cluster al-
lows deploying and running user-provided container
images, hence shifting most management efforts to
container-specific tasks. Moreover, some CaaS offer-
ings such as AWS Elastic Container Service (Ama-
zon Web Services, 2021e) with the EC2-based pricing
mode allow hosting containers such that consumers
manage the infrastructure resources for running con-
tainers and define the scaling rules for resulting con-
tainer instances.
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Figure 4: A solution sketch (a) and an example deployment (b) for the Consumer-managed Container Hosting Pattern.



3.5 Provider-defined Stack
Hosting Pattern

Problem: How to host a software
component without managing the de-
ployment stack while retaining control
over the scaling configuration?

Context: A software component needs to be hosted
on any compatible deployment stack without other
stack management requirements, but with cloud con-
sumers managing the scaling configuration.
Forces: Often, software components are ready to
be hosted on a standard platform without additional
modifications, e.g., a Java WAR file or a database
schema. Provisioning a virtual machine and installing
Java individually would then be an overhead. How-
ever, for availability requirements it can be benefi-
cial to control the scaling configuration, e.g., to fine-
tune scaling rules. This also applies to products such
as databases or message queues for hosting database
schemas and topics, where the underlying infrastruc-
ture resources can be configured manually.
Solution: Host software components on a provider-
defined deployment stack which is compatible with
the given deployment artifact type and enables cloud
consumers to manage the scaling configuration as
shown in Figure 5. For example, PaaS offerings allow
hosting compatible deployment artifacts on provider-
defined deployment stacks, e.g., a deployment stack
required to run a Java8 application. In such cases, the
deployment stack management is reduced to the point
of selecting a desired option, whereas the scaling con-
figuration is still consumer-managed, e.g., selecting
the amount of virtual machines and managing com-
ponent’s scaling rules. Another example is related to
certain Database-as-a-Service offerings such as AWS
DocumentDB, which allow allocating infrastructure
resources for database-specific deployment artifacts.

Example: Figure 5 shows a ToDo list application
from Section 3.3 hosted using AWS Beanstalk and
AWS DocumentDB. The desired runtime is selected
from provider-defined options, i.e., the compatible
Java runtime and a MongoDB-compatible document
database. The cloud consumer, however, still is re-
sponsible for managing the scaling configuration.

Result: After applying this pattern, the deployment
stack management is significantly reduced, since con-
sumers can directly select a pre-defined runtime for
a given type of deployment artifact. Hence, this de-
ployment variant allows focusing more on the actual
component being hosted instead of managing the un-
derlying deployment stack. However, due to retained
control over scaling configuration, consumers are still
able to influence the extent to which resources are
used, and the scaling rules can typically be defined
without relying on the provider.

Known Uses: Multiple PaaS offerings enable im-
plementing this pattern, e.g., AWS Elastic Beanstalk
Service (Amazon Web Services, 2021d) and Azure
App Service (Microsoft, 2021a). AWS Beanstalk en-
ables hosting software components developed for var-
ious platforms using pre-defined deployment stacks.
Infrastructure resources required for running to-be-
deployed components must be defined by developers
in a form of AWS EC2 virtual machines represent-
ing required deployment stacks. Similarly, Azure’s
App Service allows hosting software components de-
veloped for multiple different platforms and con-
trol the allocation of underlying infrastructure. Cer-
tain product-specific offerings also fit into this cate-
gory, e.g., Amazon DocumentDB (Amazon Web Ser-
vices, 2021a) or Oracle’s Database Classic Cloud Ser-
vice (Oracle, 2021) allow managing the resources al-
located for using database-specific components.
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Figure 5: A solution sketch (a) and an example deployment (b) for the Provider-defined Stack Hosting Pattern.



3.6 Provider-managed Container
Hosting Pattern

Problem: How to host a software
component while managing only the
runtime environment it runs on?

Context: A software component needs to be hosted
such that its runtime environment is customizable.
Forces: Managing the entire deployment stack might
not be necessary for cases without specific customiza-
tion requirements. Instead, cloud consumers might
want to focus on managing only the runtime environ-
ment, e.g., when proprietary libraries are required to
run the software component. In such cases, cloud con-
sumers can also benefit from provider-managed scal-
ing configuration, e.g., infrastructure resources man-
agement and scaling container instances.
Solution: Host software components on a deploy-
ment stack with provider-managed container engines
that do not require managing scaling configura-
tion. Figure 6 shows the solution sketch in which
a containerized software component is hosted on a
provider-managed container engine. Management
of runtime environment remains possible via con-
tainer images, but the scaling configuration is now
provider’s responsibility. With provider-managed
scaling configuration, cloud consumers do not need
to manage infrastructure resources based on compo-
nent’s operation mode, e.g., long-running containers
versus stateless tasks execution. For example, in some
CaaS offerings cloud consumers do not need to al-
locate infrastructure resources, and providers are re-
sponsible for scaling containers in and out.

Example: Figure 6 shows a ToDo list application
from Section 3.3 hosted using AWS Fargate, a server-
less container-centric offering from Amazon. The de-
sired runtime is defined as a part of container im-
ages, i.e., the compatible Java runtime and a Mon-
goDB, with provider-managed scaling configuration.
Since defining the runtime in container images for
standard products such as databases involves unnec-
essary overhead, it might be simpler for such com-
ponents to directly implement the Serverless Hosting
Pattern discussed in the next subsection.

Result: When applied, this pattern allows config-
uring the runtime environment by creating custom
container images, while deployment stack manage-
ment efforts are reduced. In addition, with provider-
managed scaling configuration, the infrastructure re-
sources required to run containers are allocated by
providers, including the simplified scaling rule defi-
nition managed primarily by providers. Components
hosted using this pattern can be combined with com-
ponents hosted using the Serverless Hosting Pattern to
implement serverless applications.

Known Uses: Multiple CaaS offerings enable
implementing this pattern, e.g., AWS Far-
gate (Amazon Web Services, 2021g), Azure
Container Instances (Microsoft, 2021b), and Google
CloudRun (Google, 2021b) allow hosting container
images while the deployment stack and scaling
configuration is managed by providers, including
scaling containers to zero instances for some offer-
ings. Another example is related to more specialized
offerings, e.g., Iron Worker (Iron.io, 2021) enables
execution of containerized background tasks.
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Figure 6: A solution sketch (a) and an example deployment (b) for the Provider-managed Container Hosting Pattern.



3.7 Serverless Hosting Pattern

Problem: How to host a software com-
ponent without managing its deploy-
ment stack or scaling configuration?

Context: A software component needs to be hosted
on a compatible deployment stack without further de-
ployment stack or scaling configuration management.
Forces: In certain cases, it is preferable to simply se-
lect a pre-defined runtime environment without man-
aging the deployment stack components and scaling
configuration. For instance, defining a runtime and
managing the scaling configuration might be an over-
head when only a small code snippet needs to be
hosted. Tighter coupling with providers can also sim-
plify integration with other provider-specific services.
Solution: Host software components on a provider-
defined deployment stack which is compatible with
the given deployment artifact type and does not re-
quire cloud consumers to manage the scaling config-
uration. Figure 7 shows the solution sketch in which
a software component is hosted on a provider-defined
stack which does not require cloud consumers to man-
age scaling configuration. For example, using public
Function-as-a-Service platforms one can host source
code snippets and configure them to be invoked when
specific cloud events occur. Many products such as
databases and message queues are also offered as ser-
vices that do not require managing underlying infras-
tructure resources, e.g., serverless DBaaS offerings.
Another example is Software-as-a-Service (SaaS) of-
ferings, in which components typically require mi-
nor configuration efforts to allow using them, whereas
users are not aware which deployment stacks are used
in the background. For example, consumers can host
static web pages via GitHub Pages by configuring a
repository in a specific way.

Example: Figure 7 shows a ToDo list application
from Section 3.3 hosted using AWS Lambda and
AWS DynamoDB, serverless FaaS and DBaaS offer-
ings from Amazon. The desired runtime is selected
from the list of available runtime environments, i.e.,
the compatible Java runtime and a NoSQL database
compatible similar to MongoDB.

Result: When applied, this pattern results in a sim-
plified deployment of a component, where typically
only a deployment artifact compatible with the under-
lying platform and specific configurations need to be
provided to start using the component, whereas the
underlying platform is responsible for scaling config-
uration. Even more control is given up in SaaS offer-
ings, where a particular product can be used by pro-
viding product-specific configurations. This hosting
pattern is the least managed option in terms of deploy-
ment stack and scaling configuration management,
which allows focusing more on business logic and de-
sired component interactions. Furthermore, this pat-
tern eases the integration with other provider services,
e.g., trigger FaaS functions using events from DBaaS.

Known Uses: Multiple FaaS offerings including
AWS Lambda (Amazon Web Services, 2021h), Azure
Functions (Microsoft, 2021c), and Google Cloud
Functions (Google, 2021a) enable implementing this
pattern. The hosted code is automatically scaled
based on demand, and also can be integrated with
events originating from other provider services due
to a tighter-coupling with provider’s infrastructure.
Other examples include object storage services such
as AWS S3 (Amazon Web Services, 2021i) or
databases such as Amazon Aurora Serverless (Ama-
zon Web Services, 2021b), which do not require con-
sumers to manage the scaling configuration. Instead,
providers employ pricing models in which consumers
are charged based on how products are used in terms
of computational power, storage, data transfer, etc.

Software Component

Provider-defined Host

Infrastructure 
Resources

Consumer-managed 
stack component

Consumer-managed 
scaling configuration

Hosted On 
Relationship

Provider-managed 
stack component

ToDo.jar

AWS 
Lambda

Java 8 Runtime

ToDo Collection

AWS 
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a) Solution sketch b) Deployment stack example

Figure 7: A solution sketch (a) and an example deployment (b) for the Serverless Hosting Pattern.



4 ON PATTERNS’ VALIDITY

Following the approach in (Endres et al., 2017), we
identified pattern candidates based on the analysis
of documentation of existing hosting solutions. In
particular, we considered existing application host-
ing approaches and technologies, their documenta-
tions, implementations of the most downloaded arti-
facts in their official repositories, and scientific publi-
cations as a basis for our knowledge collection. Based
on the found commonalities, we elaborated pattern
candidates, which we iteratively refined to obtain the
proposed deployment patterns, as prescribed by the
guidelines in (Fehling et al., 2014b).

We also validated the proposed patterns based on
the Rule of Three (Coplien, 1996), which states that a
pattern is valid if we can find three independent occur-
rences of such pattern in the real world. Table 1 shows
that this is the case for the proposed hosting patterns,
by recapping the known uses of such patterns already
discussed in Section 3.
Table 1: Real-world occurrences of the proposed patterns.

Hosting Pattern Real-world Occurrences
Serverful Hosting IBM Cloud Bare Metal Servers,

AWS EC2, Azure IaaS, Google
Compute Engine

Consumer-managed
Container Hosting

IBM Cloud Kubernetes Ser-
vice, Azure kubernetes Service,
AWS Elastic Kubernetes Ser-
vice, AWS Elastic Container
Service (EC2-based pricing)

Provider-defined
Stack Hosting

AWS Beanstalk, Azure App
Service, Amazon Docu-
mentDB, Oracle’s Database
Classic Cloud Service

Provider-managed
Container Hosting

AWS Fargate, Azure Container
Instances, Google CloudRun,
Iron Worker

Serverless Hosting AWS Lambda, Azure Func-
tions, Google Cloud Functions,
IBM Cloud Functions, AWS
S3, Amazon Aurora Serverless

5 DISCUSSION

Following the discussion in Section 3.1, one
could argue that the hosting patterns in which
providers manage at least one of the discussed di-
mensions (Sections 3.5 and 3.6) can also be seen
as serverless-style hosting options. Firstly, services
allowing to implement the Provider-managed Con-
tainer Hosting Pattern are indeed often called server-
less by cloud providers. For example, AWS Far-
gate or Google CloudRun differ from more consumer-
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Figure 8: A spectrum of component hosting patterns and the
notion of “serverless zone” encompassing several patterns.

managed container-centric services as they do not
require allocating the underlying infrastructure re-
sources, hence resembling the Serverless Hosting Pat-
tern in this aspect. However, from the perspective
of the deployment stack management, this pattern is
different from the Serverless Hosting Pattern: it of-
fers more freedom to cloud consumers, e.g., FaaS or
certain DBaaS offerings do not really allow modify-
ing the deployment stack1. Secondly, the Provider-
defined Stack Hosting Pattern enables choosing a de-
ployment stack pre-defined by provider (a specific
Java runtime in a PaaS offering, a database of spe-
cific version using DBaaS, etc.), thus, also resembling
the Serverless Hosting Pattern. However, this pattern
differs in freedom of the underlying scaling configu-
ration management. Moreover, cloud service models
enabling to implement it, e.g., PaaS, are less often as-
sociated with the term serverless in the grey literature
and by practitioners (Leitner et al., 2019).

These overlaps among patterns make it not en-
tirely fair to say that a serverless-style hosting can
only be implemented using the Serverless Hosting
Pattern, essentially raising a question of what the
term serverless actually encompasses. Considering
how fast cloud services evolve and how often cloud
providers tend to overlap features in different offer-
ings, introducing a strict definition of “serverless-
ness” seems non-trivial and rather restrictive. In-
stead, we think that the idea of “serverless-ness” can
be perceived in a fuzzier sense, i.e., the hosting pat-
tern can be considered serverless when at least certain
management requirements are met. Figure 8 shows
the patterns’ spectrum discussed in Section 3.1 with
the so-called “serverless zone” in it, which encom-
passes the patterns with the highest degree of man-
agement in at least one of the dimensions. The idea

1Certain FaaS platforms support container images as de-
ployment artifacts, which, essentially, also allows imple-
menting the Provider-managed Container Hosting Pattern.



of such serverless zone could enable having several
distinct patterns that vary in degree of management
related to specific aspects still perceived as serverless-
style hosting, which in its turn allows flexibly select-
ing component hosting options as well as verifying
whether a given application’s topology conforms to
the serverless architectural style.

Another interesting point worth emphasizing is
how the introduced hosting patterns can be com-
posed with patterns from other pattern languages, e.g.,
microservice patterns or enterprise integration pat-
terns. For example, a well-known API Gateway pat-
tern (Richardson, 2018) can be implemented differ-
ently based on which hosting pattern is chosen. As
a result, when deciding on application’s components
one can think about a composition of patterns, e.g.,
an API Gateway combined with the Serverful Hosting
pattern can be implemented by installing Kong Gate-
way on a Linux-based VM, whereas the API Gateway
combined with the Serverless Hosting pattern can be
implemented by simply using AWS API Gateway ser-
vice. Similar composition reasoning can be applied
when deciding on other pattern compositions too, e.g.,
implementation of a Message Filter pattern (Hohpe
and Woolf, 2004) can be different depending on
which hosting pattern is chosen. However, when
speaking about concrete solutions, the more provider-
managed a hosting pattern is, the more it is coupled
with available provider offerings, essentially, raising
a need for having a knowledge base defining con-
crete solutions for hosting patterns (and pattern com-
positions) to facilitate the overall decision-making
process. For example, the Provider-managed Con-
tainer Hosting Pattern is mainly related to provider-
managed container services such as AWS Fargate,
making it less pervasive than other patterns, at least
in the context of currently-available cloud offerings.

6 RELATED WORK

Cloud-related patterns have been widely studied.
Fehling et al. (Fehling et al., 2014a) introduce cloud
computing patterns supporting developers in building
cloud-native applications, viz., applications built for
running in cloud and structured to fully exploit its po-
tentials. Other examples in this direction (Erl et al.,
2015; Pahl et al., 2018; Davis, 2019) also provide pat-
terns for structuring cloud-native applications. Hohpe
and Woolf (Hohpe and Woolf, 2004) introduce en-
terprise integration patterns (EIPs), which are also
used to structure cloud-native applications (Yussupov
et al., 2020). The above works differ from ours as
they propose patterns for designing cloud applica-

tions, whereas our patterns focus on their hosting.
Similar considerations apply to patterns intro-

duced in the domain of serverless computing. Taibi
et al. (Taibi et al., 2020) and Zambrano (Zambrano,
2018) elicit patterns for architecting serverless appli-
cations. Hong et al. (Hong et al., 2018) present pat-
terns for improve the security of cloud-hosted ser-
vices, based on serverless computing. Hence, these
works also focus on designing cloud applications,
whereas we focus on how to host them.

Jamshidi et al. (Jamshidi et al., 2015) instead pro-
pose a catalog of patterns for migrating on-premise
applications to the cloud. The catalog of migration
patterns is refined in the subsequent work (Jamshidi
et al., 2017), which also proposes a concrete method
for enacting pattern-based migration of on-premise
application to the cloud. These patterns (Jamshidi
et al., 2015; Jamshidi et al., 2017) differ from our
hosting patterns, as they focus on adapting existing
service-based applications to allow migrating them to
the cloud, rather than on how to actually deploy such
applications. They can, however, be used in conjunc-
tion with the hosting patterns we propose: developers
may first exploit migration patterns to enable deploy-
ing applications in the cloud, and then implement our
patterns for hosting the application components.

To the best of our knowledge, the only exist-
ing work organizing knowledge on application de-
ployment into patterns focuses on deployment model
types. Endres et al. (Endres et al., 2017) distinguish
two possible approaches for specifying the deploy-
ment of an application, viz., declarative vs. impera-
tive application deployment. Intuitively, the declar-
ative deployment consists in specifying the desired
state for an application, by relying on a deployment
engine to automatically determining and enacting the
sequence of operations for enforcing such state. The
imperative deployment instead consists in explicitly
specifying the sequence of operations to enact for de-
ploying an applications. These patterns are, hence,
complementary to our hosting patterns: developers
can use our patterns to derive the required deployment
steps for a given component, whose actual specifica-
tion can then be either declarative or imperative, de-
pending on the developers’ needs.

Another important aspect related to patterns is
how to find suitable patterns and traverse to related so-
lutions in different interconnected pattern languages.
Falkenthal et al. (Falkenthal and Leymann, 2017) in-
troduce the concept of solution languages which facil-
itate the navigation from the level of patterns to con-
crete solutions, e.g., implementation of a pattern us-
ing specific technologies. Leymann et al. (Leymann
and Barzen, 2020) propose an approach and tool



for navigating through different pattern languages in-
spired by the analogy with cartography. Such ap-
proaches can help linking the hosting patterns intro-
duced in this work with other pattern languages such
as cloud computing patterns (Fehling et al., 2014a),
and support the search for concrete solutions.

Finally, it is worth relating our hosting patterns
to the existing works on pattern-based application
deployment. Harzenetter et al. (Harzenetter et al.,
2020) provide a model-based solution for deploy-
ing applications, whose deployment specification ex-
ploit cloud patterns to specify application/infrastruc-
ture components in a vendor-agnostic manner. Yus-
supov et al. (Yussupov et al., 2020) use EIPs to gener-
ically specify the integration of application service.
In both cases, abstract patterns are then automatically
replaced by concrete components when the deploy-
ment of an application is actually enacted. Solutions
like (Harzenetter et al., 2020) and (Yussupov et al.,
2020) can hence benefit from the patterns we propose
in this paper. Indeed, such solutions could extend the
set of supported patterns by also including our hosting
patterns, hence making application deployment spec-
ifications even more generic.

7 CONCLUSIONS

In this work, we introduced five hosting patterns and
the corresponding pattern primitives defining a com-
mon vocabulary for formulating the patterns. The in-
troduced hosting patterns aim to facilitate the decision
making process for choosing the most suitable host-
ing variant for a given software component. We also
positioned the presented patterns in a so-called ap-
plication components hosting spectrum, showing how
they represent different combinations of management
responsibilities related to deployment stack and scal-
ing configuration management. Finally, we validated
the proposed patterns by showing how they fulfill the
Rule of Three (Coplien, 1996), viz., by presenting at
least three real-world occurrences of each pattern.

For future work, we plan to devise a decision
support system helping application administrators in
choosing the hosting solution most suited to their
needs. We plan to investigate which are the well-
known advantages and disadvantages of each hosting
pattern, or when it is better to adopt one pattern, e.g.,
by means of a multivocal review. We could then ex-
ploit the obtained knowledge to start devising a de-
cision support system, which could also be enhanced
by exploiting other existing systems to further refin-
ing decisions, e.g., PaaSfinder (Kolb, 2019) or FaaS-
tener (Yussupov et al., 2021), if a cloud consumer
needs to decide which PaaS or FaaS platform to use

to deploy a given application. Another interesting re-
search direction is to analyze how our hosting patterns
can be extended based on other dimensions such as
application health management. Furthermore, we in-
tend to define more precise links between the hosting
patterns and existing pattern languages such as cloud
computing patterns (Fehling et al., 2014a) to simplify
finding composite solutions using existing approaches
such as Pattern Atlas (Leymann and Barzen, 2020)
and Pattern Views (Weigold et al., 2020).
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