
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{zimmermann, breitenbuecher, kepes, leymann, weder}@iaas.uni-stuttgart.de

Data Flow Dependent Component Placement
of Data Processing Cloud Applications

Michael Zimmermann, Uwe Breitenbücher, Kálmán Képes,
Frank Leymann, and Benjamin Weder

© 2020 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Zimmermann2020_ComponentPlacement,
author = {Michael Zimmermann and Uwe Breitenb{\"u}cher and K{\'a}lm{\'a}n

K{\'e}pes and Frank Leymann and Benjamin Weder},
title = {{Data Flow Dependent Component Placement of Data Processing

Cloud Applications}},
booktitle = {Proceedings of the 2020 IEEE International Conference on Cloud

Engineering (IC2E 2020)},
year = 2020,
month = apr,
pages = {83--94},
isbn = {978-1-7281-1099-8},
doi = {10.1109/IC2E48712.2020.00016},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

Data Flow Dependent Component Placement
of Data Processing Cloud Applications

Michael Zimmermann, Uwe Breitenbücher, Kálmán Képes, Frank Leymann, Benjamin Weder
Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany

[firstname.lastname]@iaas.uni-stuttgart.de

Abstract—With the ongoing advances in the area of cloud
computing, Internet of Things, Industry 4.0, and the increasing
prevalence of cyber-physical systems and devices equipped with
sensors, the amount of data generated every second is rising
steadily. Thereby, the gathering of data and the creation of
added value from this data is getting easier and easier. However,
the increasing volume of data stored in the cloud leads to
new challenges. Analytics software and scalable platforms are
required to evaluate the data distributed all over the internet. But
with distributed applications and large data sets to be handled,
the network becomes a bottleneck. Therefore, in this work, we
present an approach to automatically improve the deployment
of such applications regarding the placement of data processing
components dependent on the data flow of the application. To
show the practical feasibility of our approach, we implemented
a prototype based on the open-source ecosystem OpenTOSCA.
Moreover, we evaluated our prototype using various scenarios.

Index Terms—Application Deployment, Deployment Automa-
tion, Data Locality, Data Flow, TOSCA

I. INTRODUCTION

Advances in Internet of Things (IoT) [1], cloud comput-
ing [2], and the increased usage of sensor-equipped devices
and Cyber-Physical Systems (CPS) [3], have led to a signif-
icantly increased amount of data stored in the cloud [4]. A
wide range of domains can benefit from new opportunities,
such as cost-savings through pay-per-use models, for example,
mobility [5], health care [6], energy management [7], and
scientific computing in general [8]. Also in the area of Industry
4.0, new use cases can be realized, for example, by deploying
the processing logic as close as possible to the data sources [9],
[10]. In order to enable data analysis providing new insights
and optimization potential, for instance, in manufacturing
processes, data from different sources and locations need to
be integrated, analyzed, and compared. However, with the
increasing amount of stored data, the network is becoming
a bottleneck and the movement of data from one location to
another becomes a problem [11], [12]. Thus, components need
to be distributed over different locations, e.g., private, public,
and edge clouds [13], depending on the specific requirements
as well as the locality of the data to be analyzed. However,
the distribution of applications leads to various challenges: re-
quired middleware and application components have to be
deployed and configured in order to obtain the required data
and to enable the communication between each other [14]. In
cases where the application and the overall deployment process
are highly complex, a manual deployment approach is error-
prone, time-consuming, and therefore, not efficient [15], [16].

The deployment and management of applications can be
automated using various deployment technologies, such as
(i) provider-specific systems, (ii) provider-independent, but
platform-specific technologies, (iii) general-purpose technolo-
gies [17], or furthermore, (iv) provider- and technology-
agnostic standards, such as the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [18]–[20].

However, the placement of application components regard-
ing their locality can vary depending on different character-
istics, for example, requirements of the data and the data
processing components. For instance, if the data from different
data sets, located in different data centers or countries should
be analyzed, dependent on the respective size of the data
and if the data can be preprocessed in order to reduce the
overall size, for example, by aggregating a time series, it can
make a significant difference where the processing logic is
located [21]. And thus, how much data needs to be moved
from one location to another. Furthermore, differences in data
privacy policies or laws may also lead to certain deployment
locations or prohibit some [22]. For complex applications,
processing multiple distributed data sets, the manual effort for
evaluating all generally possible deployment solutions regard-
ing the placement of components and data sets is immense.

In this paper, we tackle these challenges. We present
an approach, that automatically improves the deployment
of distributed applications regarding the placement of data
processing components and data sets by taking the following
factors into account: (i) the size of the data sets, (ii) the
data flow of the application, and (iii) further characteristics,
such as data privacy requirements, performance requirements,
and the Data Factor (DF) [23]. The Data Factor describes,
if and to what extent a data processing function is reducing
or inflating the volume of the processed data, and therefore,
how much data needs to be shipped from one location to
another after the function was applied to the data. The goal
is to reduce the amount of data that has to be transferred
over a long distance via the internet. Moreover, besides the
placement decision-making, our approach supports the general
deployment of applications by automatically (i) generating an
incomplete deployment model based on the data flow of an
application, (ii) completing this deployment model based on
the results of the placement algorithms for each component,
and (iii) deploying the data processing application itself. To
validate the practical feasibility of our approach, we present a
prototypical implementation based on the TOSCA standard.

The remainder of this paper is structured as follows. In
Section II, background, fundamentals, and a motivational
scenario are introduced. In Section III, the method of our
approach is described step by step. Our algorithms are pre-
sented in Section IV. In Section V, our approach is validated
by a prototypical implementation and evaluated. Section VI
discusses related work and Section VII concludes this paper.

II. FUNDAMENTALS, BACKGROUND
AND MOTIVATIONAL SCENARIO

In the following subsections, we first introduce some basic
information about deployment models, required for under-
standing the remainder of this paper. Moreover, we introduce
concepts of having the data to be processed as close as
possible to the components processing the data, called data
locality [24], [25]. For example, in cloud computing, the
higher the data locality, the less data needs to be transferred
over the network. Since data locality is not a new idea, we
present an overview of different areas and domains in which
data locality concepts are researched and applied. Furthermore,
we present a motivational scenario for our proposed approach.

A. Deployment Models and Topologies

Since the manual deployment of applications is too error-
prone, time-consuming, and requires an immense level of
technical expertise [15], [16], the automation of application
deployment is essential. Various deployment automation sys-
tems exist, supporting the automated and model-based deploy-
ment of applications [26]. Technically, deployment models
can be separated into declarative deployment models as well
as imperative deployment models [27]. Declarative deploy-
ment models describe the desired structure of an application
that shall be deployed. These models are based on directed
graphs and consists of components, their relations, as well
as properties [27]. They are also referred as topology-based
deployment models, or just short as topology of an application.
Imperative deployment models, on the other hand, describe
all the single deployment tasks required for the deployment
of an application. For declarative deployment models, these
activities can be inferred by a runtime based on the topology
of the application [28]. Since a variety of deployment systems
support declarative deployment models [26], the presented
approach is based on this kind of deployment models.

Figure 1 depicts an exemplary declarative deployment
model consisting of four main components: SourceDB, Pro-
cessor, ResultDB, and Monitor. Components have component
types, e.g., Grafana or Java-App. They are reusable and define
the semantics of a component. Components are connected us-
ing typed relations, e.g., hostedOn or connectsTo. For instance,
Monitor and ResultDB are hosted on an UbuntuVM provided
by AWS-EC2. In order to get the data, the Processor connects
to the SourceDB. Properties are used to provide additional
information, for example, the endpoint of OpenStack and
the credentials for AWS-EC2. Additionally, as stated by the
property State, the left stack consisting of SourceDB, MySQL-
DBMS, and UbuntuVM is already running on OpenStack.

Monitor
(Grafana)

ResultDB
(InfluxDB)

(Java)

Processor
(Java-App)

(UbuntuVM)

(AWS-EC2)

PW: ******
Region: us-east-1

(UbuntuVM)

SourceDB
(MySQL-DB)

State: running

(OpenStack)

Endpoint: myos.org

(MySQL-DBMS)

State: running

(UbuntuVM)

State: running

hostedOn

connectsTo

dependsOn

Fig. 1. Exemplary declarative deployment model.

B. Data Locality

The basic idea of data locality is to have the data as close
as possible to the function processing this data [24], [25],
for example, on the same physical node. Data locality can
be achieved by the two paradigms of function shipping and
data shipping [9], [29]. Function shipping is applied when the
functionality is shipped or provisioned close to the data to be
processed. Data shipping, on the other side, is applied when
the data is shipped to the functionality processing the data. In
the following we want to give a first brief overview of areas
in which the concept of data locality has been researched.

Cornell et al. [30] examined the performance of coupled
multi-system database systems using a function request ship-
ping approach and a data sharing approach. In the first
approach, the database is partitioned among the multi-system,
and only the function requests are shipped between them. In
the latter approach, the idea is to share the data among the
multi-system by sharing a common database at disk level.
The main goal of both approaches is to avoid transferring an
unnecessary amount of data between the single systems.

In the area of microprocessors and microcomputers, re-
search was conducted about merging processing and memory
into a single chip in order to reduce overall data movement,
and therefore, increase the overall performance [31]–[33].

MapReduce [34] presents a programming model addressing
these data locality issues in order to improve the performance
of data-intensive applications in the area of cloud computing
and Big Data [25]. MapReduce simplifies the development and
execution of large-scale data processing jobs, by decomposing
and distributing the tasks on distributed file systems and
gathering as well as integrating the results afterwards again.
It is used, e.g., by Google File System [35] and Hadoop
Distributed File System [36] to handle large amounts of data.

While in Big Data analytics, the data processing is typically
performed in centralized ways, for example, in a Big Data
warehouse, in edge analytics [37] the data processing is done
near the active device or even directly on the device itself.
Especially in IoT with lots of connected devices, this approach
is often used in order to reduce the effort and required time
of sending device data into the cloud or an on-premise server.

AWS
(US-West)

Azure
(US-East)

Local IT
Infra-

structure

Analytics Service

PostgreSQL
11.4

Research
Data 1
(5 TB)

Adapter-3

Adapter-2

AggregatorAdapter-1
MongoDB

4.3

Research
Data 2
(10 TB)

MySQL
8.0

Research
Data 3
(10 TB)

Monitor

Where to place
my components?

Data
Scientist

?

?

?

?

Data Flow

hostedOn

?

Which middleware &
provider do I need?

Fig. 2. Motivating scenario of an application for analyzing data from different locations.

In high-performance computing systems, shipping the data
often is the preferred option, since in such systems, typically
performing CPU-intensive computations, the effort of trans-
ferring the data to the computing units is low compared to the
computing time [38]. However, within the context of Big Data,
IoT, cloud, and edge computing, the approach of transferring
large amounts of data to the computing components, usually
would be significantly slower than moving the computing com-
ponents as near as possible to the data to be processed [12].

Furthermore, in the area of scientific workflows, especially
when they are greatly data-intensive, location as well as
distribution depending on the size of the data to be processed
are acknowledged research challenges to be solved [39], [40].

As this brief overview shows, there are different approaches
for the placement problem proposed in the literature, located
in different domains and based on different assumptions and
optimization goals. A more precise differentiation of our work
to existing related work is given in the related work section.

C. Motivating Scenario

For emphasizing the motivation of this research work, a
motivating scenario for placing components of data processing
cloud applications based on their data flow is presented in
this section. The scenario illustrates the connection of different
data sets to be analyzed with the components to analyze them.

In Figure 2, the exemplary data processing cloud application
is depicted, consisting of data processing components and var-
ious data sets to be analyzed. Besides the single components
for processing the data and the data sets, the figure also shows
the data flow of the overall application. On the right side, two
different data sets are shown: Research Data 2 stored in a
MongoDB database and Research Data 3 stored in a MySQL
database. Both databases containing the research data sets are
already available and are hosted on the two cloud providers
AWS and Azure. While Research Data 2 has a volume of 10
terabytes and is stored in the region US-West, Research Data 3
has a volume of 10 terabytes as well, but is stored in the region
US-East. Moreover, both databases are managed by third-

parties, which are only granting public read access to them.
On the left side of the figure, the data scientist is depicted.
He has gathered 5 terabytes of data (Research Data 1),
stored in a PostgreSQL, hosted on a local infrastructure, for
example, a private cloud or some legacy system. The other
components of the depicted application, for example, the three
Adapters for getting the data, the Aggregator for aggregating
Research Data 2 and Research Data 3, the Analytics Service
for analyzing the data, and the Monitor for showing the results,
are developed and managed by the scientist as well. The goal
of the data scientist is to analyze and compare the two data
sets stored in the US with his locally available data set.

However, since the both data sets available in the US
together are 20 terabytes in size, manually downloading the
data from the US in order to process and analyze the data
locally would be time-consuming. Provisioning the entire
application in a local environment and pulling the data from
the databases would be time-consuming as well. Likewise,
provisioning all required components and uploading 5 ter-
abytes of data near to the data in the US would be time-
consuming and not efficient. Since a huge amount of data
needs to be transferred from different locations to a common
location, in these scenarios, as described in Subsection II-B,
the network can be seen as a serious bottleneck, regarding
the performance of the application. Depending on the data
flow as well as the characteristics of the single components
(pre-)processing the data, for example, if they are reducing
or inflating the data, the performance of the application can
be improved by distributing the components. Data reducing
processing steps are, for example, steps aggregating time series
or selecting only subsets, for example, by removing irrelevant
or redundant data from the source data set. Data inflating
are processing steps interpolating missing values or unzipping
archives, for example. Thus, the goal of our approach is
to place data processing components and data sets to be
provisioned dependent on the characteristics of every single
component as well as the data flow of the overall application.
And therefore, reducing the transferred data in the system.

Generate
Incomplete

Topology

Add Deployment
Requirements
(optional)

Application
Deployment

Locality
Grouping
& Placing

Model
Data Flow

VIIVI II III

Topology
Completion

V

Fig. 3. Overview of the method for placing the components of data processing cloud applications.

III. METHOD FOR PLACING COMPONENTS
OF DATA PROCESSING APPLICATIONS

In this section, we present our method for placing the
components of data processing cloud applications regarding
their location. An overview of the method is depicted in
Figure 3. The goal is to distribute the components of data
processing applications based on the data flow of the overall
application and the characteristics of the single components, in
order to reduce the amount of data that needs to be moved from
one location to another over a long distance via the network.

A. Model Data Flow

In the first step, a data flow model representing (i) the data
sources, (ii) the components of the data processing application,
(iii) the data flow between the data sources and these compo-
nents, and (iv) characteristics, such as the size of the data
sets and the Data Factor (DF) has to be created. Again, the
Data Factor describes, if and to what extent a data processing
component (i) reduces the data it processes (DF < 1),
(ii) inflates it (DF > 1), or (iii) is neutral regarding the size
of the data (DF = 1). This factor is required in order, for
example, to place a component reducing the size of data that
needs to be transferred to another location, as near as possible
to the data it should process. On the other hand, a component
inflating the size of data should be placed as near as possible
to its target processing location. In case of a data size neutral
component, the component can be placed flexible, as it is not
affecting the amount of data that needs to be transferred.

For modeling the data flow, we use a pipes-and-filters [41]
oriented approach. A pipes-and-filters based model is a di-
rected graph consisting of nodes and edges. The nodes are
called filters and the edges are called pipes. Filters have input
and output data and are processing steps, i.e., components, for
example, to aggregate or interpolate data. Pipes connect filters
and describe the direction of the data flow. An example of
such a model is shown in Figure 3 below step one. By using
pipes-and-filters as well as the annotated Data Factor for each
filter, the data flow of the overall application can be modeled.

B. Generate Incomplete Topology

In the second step of our method, an incomplete topology,
i.e., a declarative deployment model with open requirements,
is generated using the data flow model from the previous step.

Based on the names of the components of the data flow
model, either, (i) an already existing and matching component
can be found in a repository or (ii) a corresponding component
needs to be created and added to the topology. For example, in
our motivation scenario, data processing components, such as
the Analytics Service or Adapter-1 are mapped to concrete ex-
ecutable implementations. For instance, the Analytics Service
may be implemented as a Java application able to run on an
Apache Flink framework and the adapter as a simple Python
script, which can read the data from the Research Data 1
data source. The data flow itself is transformed by adding a
corresponding relation for each data flow edge to the topology.
These relations are set to the type of connectsTo, which defines
a connection between two components or a component and a
data source. The direction of relations is based on whether
a component pulls or pushes data, which can be annotated
in the data flow. For example, the adapter components in
our motivating scenario initiate the communication with the
databases and pull the data from them. Therefore, the adapters
will be the sources of the connectsTo relations between them
and the databases. After adding all components and relations
to the topology, each data source component is automatically
annotated with an initial locality group, specifying that the
data set it contains is available at the specified location.
Furthermore, this defines, that the data sources are already
running on some hosting environment and don’t have to be
provisioned first. The processing components, however, have
to be provisioned either close to these data sources as the
processed data may be reduced by them, or close to another
processing component in cases where the data is inflated.

C. Add Deployment Requirements

In the optional step three, requirements regarding the de-
ployment of the components themselves can be specified.
Required computing power, storage capacity, as well as other
restrictions in the selection of possible hosting locations are
such requirements. For instance, that some data and the
components processing this data are only allowed to be
hosted in a specific country or on a companies’ private cloud,
because of data privacy policies or other legal regulations.
In our motivating scenario, for example, the data processing
components Analytics Service and Aggregator may require
particular computing power, such as CPU and RAM from

the hosting systems. Additionally, the Adapter-1 component
for reading the data from the data source Research Data 1
may have the requirement, that it must be deployed, e.g., on a
specific private cloud because of data privacy policies or laws.

D. Locality Grouping and Placing

In the fourth step, the placement of the data processing
components in relation to the data source components is
calculated. As input, the data flow model created in the first
step, as well as the incomplete deployment model along with
the specified requirements and initial locality groups from
steps two and three are required. Based on the data flow,
the Data Factor, and the specified component deployment
requirements, the processing components are grouped together,
describing that these components should be deployed close
to each other. In our motivating scenario, for example, the
Aggregator should be placed near to the Adapters 2 and 3,
as it reduces the amount of data to be transferred. When
all processing components are assigned to a locality group,
at the end of this step, each group is also assigned to a
specific provider which is able to host the components and
fulfill all specified requirements. In Section IV, the algorithms
to calculate the locality groups and place the components
accordingly in an automated manner, are described in detail.

E. Topology Completion

In step five, the so far incomplete deployment model is
completed based on the location and provider assignments
performed in step four. This can be done manually or auto-
mated by using a completion approach for deployment models,
as proposed, for example, in [42]–[44]. Typically, these
approaches recursively iterate over all components with open
requirements and search for matching components fulfilling
these requirements. After the matching components are added
to the incomplete deployment model and therefore, all require-
ments should be fulfilled, the deployment model is assumed
to be deployable. In our motivating scenario, for example, the
Adapter 2 may be implemented using Java and has a require-
ment for a Java runtime, which in turn has a requirement for
a virtual machine. Therefore, the Java component with the
requirement could be replaced by a stack containing the Java
component, the Java runtime, and a virtual machine hosted
by some cloud provider. If the grouping of step four does
not allow a successful completion, the problematic component,
e.g., a cloud provider, not supporting the computing power or
privacy requirements, is blacklisted. Furthermore, the grouping
is done again, without using this specific cloud provider.

F. Application Deployment

In step six of our method, the application is deployed in
an automated manner using a declarative deployment system.
This step is depending on the used declarative deployment
model, i.e., the used modeling language must be supported
by the deployment system. For our proposed method, any
deployment system supporting a declarative deployment model
enabling to model components and their relations is sufficient.

IV. ALGORITHMS

For automating step four of our method, we propose a series
of five algorithms. First, we describe the high-level algorithm
and afterwards details about how to assign a location to a
component based on the data flow. Finally, an algorithm is
presented to select concrete providers for the components with
assigned locations, based on requirements, such as privacy.

Algorithm 1 determineLocalityAndPlacement(dfm, d)
1: // dfm => data flow model from step one
2: // d => incomplete deployment model from step three
3: while (assignmentPossible(d)) do
4: assignToLocations(d, dfm)
5: assignToProviders(d)
6: try
7: return completeModel(d)
8: catch (fault)
9: deleteLocationAssignments(d)

10: addProvidersToBlackList(d, fault)
11: end try
12: end while
13: throw fault

The high-level algorithm of our approach is described in
Algorithm 1. It gets the data flow model dfm from step one
and the incomplete deployment model d, which is generated
in step two and enriched in step three, as input. The algorithm
loops until a completed deployment model is created or no
further valid provider assignment can be found (line 3). For
this, the components are assigned to locations where they
should reside to enable an efficient data flow during runtime
(line 4). This location assignment of components is described
in detail in Algorithm 2. Then, the components are assigned
to providers, which provide infrastructure for the selected
locations, based on requirements like privacy (line 5). The
assignment to providers is described in Algorithm 5. After-
wards, the incomplete deployment model can be completed
using the provider assignments (line 7). An example of such
a completion was given in Subsection III-E. Furthermore,
we extended the topology completion algorithm introduced
by Hirmer et al. [42] to return useful fault messages if a
completion fails, which are utilized by our algorithms. If the
completion is successful, the algorithm terminates and returns
the completed deployment model, which can be deployed in
step six of our method. If the calculated provider assignment
is not possible due to unfulfilled requirements, the completion
throws a fault with the components and selected providers that
led to the error. The location and provider assignments are
deleted from the deployment model and the invalid providers
are added to the blacklists of the components (lines 9 and
10). If the blacklists lead to the case that no further provider
assignment is possible (line 3), the algorithm throws a fault
message (line 13) and the user has to adapt the model
manually. However, this case can only occur if none of the
available providers can fulfill the requirements of a component,
which would lead to an undeployable deployment model.

Algorithm 2 assignToLocations(dfm, d)
1: // dfm => data flow model from step one
2: // d => incomplete deployment model from step three
3: if (|{c | c ∈ components(d) : hasLocation(c)}| <= 1)

then
4: return assignAllComponentsToSameLocation(d)
5: end if
6: while (∃c ∈ components(d) : ¬hasLocation(c)) do
7: assignComponent(dfm,getNextUnassignedComp(d))
8: end while

Algorithm 2 is used to assign components to locations based
on the data flow and the Data Factor. The algorithm gets the
data flow model and the incomplete deployment model as
input. First, it checks if one or less components have already an
assigned location (line 3). For this, the functions components,
which returns the set of components in a deployment model
and hasLocation, that checks if a component has a location
label attached, are used. Components with an already assigned
location could, for example, be the Research Data in Figure 2,
that is stored at a certain location, or a component which has
to be placed at a dedicated location, due to legal regulations.
In the case, that just one or even none component is already
assigned to a location, it is most efficient to assign all
components to the same location, as this avoids to transfer data
between different locations (line 4). Otherwise, an unassigned
component is selected as long as there are such components
(line 6) and assigned to a location (line 7) using Algorithm 3.

Algorithm 3 assignComponent(dfm, c)
1: // dfm => data flow model from step one
2: // c => selected component to assign a location to
3: locations := {}
4: for (pipe ∈ dfm : target(pipe) = c) do
5: if (¬hasLocation(source(pipe))) then
6: return
7: end if
8: label := getLocation(source(pipe))
9: if (∃loc ∈ locations : π1(loc) = label) then

10: new := (label, π2(loc) + pipeDataSize(pipe))
11: locations← locations \ {loc} ∪ {new}
12: else
13: new := (label, pipeDataSize(pipe))
14: locations← locations ∪ {new}
15: end if
16: end for
17: for (loc ∈ locations : max(π2(loc)) do
18: // is there a provider supporting the requirements
19: // and locality group which is not blacklisted
20: if (providerAvailable(c, π1(loc))) then
21: setLocation(c, π1(loc))
22: return
23: end if
24: locations← locations \ {loc}
25: end for

Algorithm 3 gets the data flow model and the selected com-
ponent c, which needs to be assigned as input. The component
c must not have an incoming pipe for which the source is
not yet assigned to enable the determination of the location
from which the most data flows to component c. Therefore,
all pipes which have component c as target are iterated (line
4) and if one of the sources has no assigned location, the
algorithm terminates without an assignment (lines 5 to 7). In
this case, the algorithm is invoked by Algorithm 2 with another
component in the next iteration. There is always at least one
component that fulfills this condition, as per assumption, the
input data flow models are not allowed to contain loops. If
the source has a location assigned, the name of the location
is retrieved and it is checked if a tuple with the same location
name was already added to the locations variable before
(lines 8 and 9). Then, the data flow size for the current pipe is
calculated using Algorithm 4 and added to the sum of flows
from the old tuple, which is replaced by a new tuple with the
same location name and the calculated sum (lines 10 and 11).
Otherwise, a new tuple with the location name and the data
flow size of the current pipe is created and added to locations
(lines 13 and 14). Thus, locations contains the data size that
needs to be transferred to the component c grouped by the
location where the data comes from. Hence, the assignment
of c to the location with the maximum data size in locations
is most efficient in terms of data flow, as this leads to the
minimal amount of data that needs to be transferred to c
between different locations. For our location assignment, we
assume, that the transfer of data within a single location, for
instance, within the same data center is faster than between
different locations. If this assignment is not possible, because
there is no provider available in the location that is not on the
black list of the component c, the location is removed from
the set and the new maximum is calculated (lines 17 to 25).

Algorithm 4 pipeDataSize(pipe)
1: // pipe => pipe to calculate the data size flowing through
2: if (hasIncomingP ipe(source(pipe))) then
3: dataSize := 0
4: for (p ∈ getIncomingP ipes(source(pipe))) do
5: dataSize← dataSize+ pipeDataSize(p)
6: end for
7: return dataSize ∗ getDataFactor(source(pipe))
8: end if
9: return getDataSourceSize(source(pipe))

To determine the data size that needs to be transferred over
a given pipe, Algorithm 4 uses the Data Factor and the data
size of the transitively connected data sources. If the source
filter of the given pipe has no incoming pipes, it is assumed
to be a data source and therefore, its attribute specifying the
size can be directly returned (line 9). Otherwise, the algorithm
iterates over all incoming pipes (line 4), recursively calls the
pipeDataSize function in order to get the amount of data that
needs to be transferred over the pipe (line 5), and multiplies
the result with the Data Factor of the source filter (line 7).

Algorithm 5 assignToProviders(d)
1: // d => deployment model with assigned locations
2: providers := {}
3: for (c ∈ components(d)) do
4: for (p ∈ getV iableProviders(c)) do
5: if (∃prov ∈ providers : π1(prov) = p) then
6: new := (p, π2(prov) ∪ {c})
7: providers← providers \ {prov} ∪ {new}
8: else
9: providers← providers ∪ {(p, {c})}

10: end if
11: end for
12: end for
13: while (∃c1 ∈ components(d) : ¬hasProvider(c1)) do
14: nextProv := p ∈ {prov ∈ providers :

max(|{c | c ∈ π2(prov) : ¬hasProvider(c)}|)}
15: for (c2 ∈ π2(nextProv) : ¬hasProvider(c2)) do
16: setProvider(c2, π1(nextProv))
17: end for
18: end while

After assigning components to locations, they have to be
placed on a concrete provider that supports this location
to enable the completion of the deployment model and the
deployment of the application. This provider assignment is
performed by Algorithm 5, which gets the incomplete deploy-
ment model d as input. First, it is determined which of the
available providers supports which components that need to be
assigned. For this, the algorithm iterates over each component
in the deployment model d (line 3) and retrieves all providers
that support the current component by calling the function
getViableProviders (line 4). The function getViableProviders
checks for each available provider in the assigned location,
if the provider fulfills the non-functional requirements of the
component. For example, it checks if the provider conforms
to the privacy requirements of the component or if it can
provide enough computing resources. However, this function
can be extended with arbitrary selection logic for currently not
considered requirements, for example, costs of the required
resources or reliability [45]. If the provider was already added
to the variable providers, the component is added to the set
of supported components in the provider tuple (lines 5 to 7).
Otherwise, a new tuple for the provider is created and only
the current component is added to the set of supported compo-
nents (lines 9). Afterwards, the components are assigned to a
provider until all components of the deployment model have a
valid assignment (lines 13 to 18). For this, the next provider is
determined, which supports the most components that are not
yet assigned (line 14) and these components are then assigned
to the provider (line 15 to 17). Therefore, as many components
as possible are assigned to the same provider to profit from
a faster connection within the same data center or possible
discounts. After all components are assigned to a provider,
the still incomplete deployment model can now be completed
accordingly to the results of this algorithm (cf. line 7 in
Algorithm 1). Afterwards the application can be deployed.

V. PROTOTYPE, VALIDATION AND EVALUATION

The concepts, presented in this paper build upon the Essen-
tial Deployment Metamodel (EDMM), providing a technology-
independent baseline for deployment automation research and
a common understanding of declarative deployment mod-
els [17]. In the course of a systematic review, Wurster et
al. [17] derived the essential parts supported by declarative
deployment automation technologies and showed how they
can be mapped to EDMM. In order to validate the practical
feasibility of our approach, we use the deployment model-
ing language TOSCA [18], [19] for the following reasons:
(i) it provides a vendor- and technology-agnostic modeling
language, (ii) it is fully compliant with EDMM [17], and (iii) it
is ontologically extensible [26]. Moreover, for implementing
our prototype we extended the open-source OpenTOSCA
ecosystem [46], which provides a tool-chain for modeling,
orchestrating, and managing cloud and IoT applications.

In this section, we first describe the mapping from EDMM
to TOSCA. Moreover, we present details of our prototypical
implementation, for example, the system architecture contain-
ing the main components of the prototype as well as our used
language for modeling data flows. Furthermore, we evaluated
our prototype regarding its performance in different scenar-
ios. For example, with different sized deployment models
regarding the amount of contained, and thus, to be placed
components and with different amounts of available providers.

A. Mapping to TOSCA

In EDMM, only a subset of entities of the TOSCA standard
is used: Deployment models are called service templates
in TOSCA, while components are called node templates
and relations are called relationship templates. Accordingly,
component types are called node types and relation types
are called relationship types in TOSCA. Furthermore, the
TOSCA standard defines some normative types for relations,
for example, hostedOn and connectsTo, that compliant de-
ployment systems have to support. In order to add additional
information to relationship types as well as node types, for
example, the username and password of a database or the
port of a web server, in TOSCA so-called properties can be
specified for node types as well as relationship types. Artifacts
in EDMM are mapped to deployment artifacts in TOSCA.
Deployment artifacts contain the business logic, therefore, they
are required for the execution of a component. Deployment
artifacts can be implemented using various technologies, for
example, a Python file implementing an analytic service. Fur-
thermore, operations in EDMM are mapped to parameterizable
management operations in TOSCA. For example, a cloud
provider or hypervisor node type usually provides management
operations to create and terminate virtual machines. They are
implemented by implementation artifacts, which can be imple-
mented using various technologies as well. For instance, as a
web service, a simple shell script, or by using a configuration
management technology, such as Ansible, Chef, or Puppet.

Winery UI Components

TOSCA
Topology Model Editor

Templates, Types &
Plans Management UI

HTTP REST API

Winery Backend System Components

Templates, Types
& Plans Database

. . .TOSCA Topology
Model Importer

Topology Completion

Templates, Types
& Plans Management

. . .

Component
Grouping & Placing

Cloud Provider
Database

Cloud Provider Management

Fig. 4. Overview of the Winery architecture. Newly added and adapted
components for implementing our prototype are highlighted in light grey.

B. System Architecture and Implementation Details

Winery is a graphical modeling tool for TOSCA and is part
of the OpenTOSCA ecosystem [46], [47]. Figure 4 gives an
overview of the Winery architecture highlighting newly added
and adapted components (light grey). The both UI components
TOSCA Topology Model Editor and Templates, Types & Plans
Management UI enable the modeling of deployment models
and the management of TOSCA elements, e.g., node types and
relationship types. The Winery back-end has an HTTP REST
API to enable the communication with the UI components.
Components of the back-end are, e.g., the TOSCA Topol-
ogy Model Importer for importing TOSCA-based deployment
models. The TOSCA elements, and all further artifacts, are
stored in corresponding databases, such as the Templates,
Types & Plans Database. For the sake of simplicity, other
components, e.g., an artifact generator or an exporter for
exporting the executable deployment models are omitted here.
In the middle of the architecture, there is the management
layer, called Templates, Types & Plans Management enabling
the management of templates, types, and other artifacts.

For implementing our approach, we adapted and extended
Winery. In order to select cloud providers based on their
location, for example, US-West and US-East, we enriched
the Cloud Provider Database to be able to support this
filter functionality. In this database, all components offered
by cloud providers are grouped together by using TOSCA-
compliant node templates as well as namespaces. Accordingly,
the Cloud Provider Management component was adapted
in order to reflect these changes. Our algorithms presented
in Section IV are part of the newly developed and added
Component Grouping & Placing component. The Topology
Completion component was adapted as well, according to our
changes proposed in Section IV. In order to enable the user to
upload a data flow model and, therefore, to start the placing

and completion process, the both Winery UI Components were
also extended. After uploading the data flow model, it is
parsed and an initial incomplete TOSCA-based deployment
model is created based on the data flow model (cf. step two
in Section III). Afterwards, the user can either modify the
generated deployment model manually, for example, by adding
additional components or specifying further requirements, or
start the algorithms for the automated grouping, placing,
as well as completion of the deployment model. After the
algorithms are finished, the resulting deployment model is
stored as a new service template in Winery, from where it
can be exported as a Cloud Service Archive (CSAR), which is
a packaging format defined by the TOSCA standard. Such a
CSAR can be deployed using a TOSCA-compliant deployment
system, such as the open-source OpenTOSCA container1 [48].

Listing 1 shows a simplified example of our pipes-and-filters
oriented model for defining data flows. The model is XML-
based and supports the both main elements Pipe and Filter.
Filters have an id and a type and can contain properties, such
as the DataSize in case of a database or the DataFactor in case
of a processing component. Further properties can be specified,
which are then adopted into the generated TOSCA deployment
model, for example, a location where a component should be
deployed or a database is already deployed. Pipes have an
id as well as a dataTransferType, specifying the type of the
connection, i.e., if the data is pulled from another component
or database, or pushed to it. In our data flow model, the
direction of the data flow is defined by specifying the Source
and Target of the pipe. This information is important, since in
TOSCA, a connectsTo relation only specifies which component
initiates the connection, but not the direction of the data flow.
Our prototypical implementation extending the functionality
of Winery as well as further exemplary data flow models and
generated deployment models are available on GitHub2.

1 <DataFlow id="ExampleDataFlow" ...>
2 <Filters>
3 <Filter id="RD3" type="MySQL-DB">
4 <Properties>
5 <DataSize unit="TB">10</DataSize>
6 ...
7 </Properties>
8 </Filter>
9 <Filter id="Adapter-3" type="...">

10 <Properties>
11 <DataFactor>0.2</DataFactor>
12 ...
13 </Properties>
14 </Filter>
15 ...
16 </Filters>
17 <Pipes>
18 <Pipe id="P1" dataTransferType="pull">
19 <Source>RD3</Source>
20 <Target>Adapter-3</Target>
21 </Pipe>
22 ...
23 </Pipes>
24 </DataFlow>

Listing 1. Exemplary data flow definition.

1https://github.com/OpenTOSCA/container/
2https://github.com/OpenTOSCA/winery/

A B C

Fig. 5. Schematic structure of the three applications used for the evaluation.

C. Evaluation

In this section, we present the results of our evaluation
regarding the time, required to determine the placement of the
components of an application using our placement algorithm.
For this purpose, we modeled three differently sized exemplary
data processing applications. The first application contains 3
data sources and 4 data processing components, that need to
be placed. The second application contains 6 data sources
and 8 data processing components. And the third application
contains 9 data sources and 16 data processing components.
The schematic structure of these three exemplary applications
used for evaluating our prototype is depicted in Figure 5.
Furthermore, since the time required to place the components
is also highly depending on the amount of possibilities where
the components can be placed at, we created three scenarios.
One scenario with 5 providers, each supporting 2 locations.
A second scenario with 10 providers, each supporting 10
locations. And a third scenario with 100 providers, each
supporting 10 locations. Therefore, in the first scenario, there
are 10 potential placements for each component, in the second
scenario, there are 100 potential placements for each com-
ponent, and in the third scenario, there are 1000 potential
placements for each component of the modeled applications.

Table I shows the results of our measurements. The me-
dian based on 10 measurements for each case is calculated.
The table shows, that the amount of available providers and
locations has the greatest influence on the required time of
our placing algorithm, and not the size of the topologies. But,
the influence of the size of the topologies increases with the
number of possible placements. However, since our approach
was developed for use in data-intensive applications, e.g., with
several terabytes of data to be processed, the initial time for
determining the placement of the components is rather short
compared to the assumed runtime of such applications.

TABLE I
REQUIRED TIME TO PLACE ALL COMPONENTS

Topology A
(3D & 4C)*

Topology B
(6D & 8C)*

Topology C
(9D & 16C)*

5 Provider each
with 2 Locations

494 ms 513 ms 524 ms

10 Provider each
with 10 Locations

1043 ms 1080 ms 1148 ms

100 Provider each
with 10 Locations

6117 ms 7052 ms 7169 ms

* D = data sources; C = data processing components

VI. RELATED WORK

Various placement approaches and algorithms have been
proposed in the literature as surveyed in [49]–[51]. How-
ever, they are based on different optimization goals and
assumptions, and thus, they are hardly comparable to each
other. Therefore, in this section, we complete our discussion
about related work, which we already discussed partially in
Section II, and try to differentiate our approach from it.

The existing placement solutions aim to optimize various
objectives, for example, resource usage [52]–[54], availabil-
ity and reliability [55]–[57], energy consumption [58]–[60],
costs [61]–[63], or response time [64]–[66]. Moreover, there
are mono-objective approaches, such as [55] or [66] as well
as multi-objective approaches, such as [52] or [63] available.
Furthermore, the existing approaches rely on various method-
ologies, e.g., graph-theoretic methods [67]–[69], greedy algo-
rithms [70]–[72], mathematical optimization approaches [73]–
[75], as well as different kinds of heuristic approaches [76]–
[78]. Our presented work can be classified as a graph-based
and greedy approach. In the following, some research work
with focus on the transfer of data are presented in more detail.

Many of the existing approaches, for example, the proposals
of Lakshmanan et al. [79] and Gedik et al. [71], are designed
specifically for clustered environments, with an assumed net-
work latency of almost zero. Thus, these kind of approaches
are not really suitable for cases, where the network latency can
have a big impact on the performance and execution time of an
application. For example, when components of data-intensive
applications need to be distributed over various locations.

Other related work considering the network (e.g., [69],
[80]–[82]), are trying to minimize the amount of exchanged
data between computing nodes. While Fischer et al. [69]
used a graph partitioning technique for this, Eidenbenz et
al. [80] proposed a heuristic algorithm, also considering
the transfer cost. Moreover, Aniello et al. [81] and Xu et.
al [82] used a greedy best-fit heuristic in order to minimize
the traffic between nodes. In [81], the main goal is to co-
locate operators on a single node, based on the amount of
communication between them. In [82], the location of the
operators are assigned in descending order of incoming and
outgoing traffic. In the area of sensor networks, Abrams and
Liu [70] are using greedy placement heuristics in order to
optimize the placement cost and reduce the amount of required
bandwidth by considering tree-structured application graphs.
Gu et al. [83] investigated how the communication cost for
data stream processing applications in geo-distributed data
centers can be minimized. Therefore, they explored inter-data
center traffic cost diversities and considered virtual machine
placement, proposing a heuristic-based algorithm. Regarding
geo-distributed data stream processing systems, Zhu et al. [68]
explicitly takes communication delays for their placement into
account. However, in their proposed approach, they assume,
that a node can only host a single operator at most, which
seems to be an unrealistic assumption. With SpanEdge [84],
Sajjad et al. proposed an approach especially for fog com-

puting, enabling programmers to specify the parts of their
application that should be placed close to the data sources. The
goal is to reduce the bandwidth consumption and the response
latency. In order to optimize the provisioning resource costs,
with MIST [75], Arkian et al. presented a data analytics
scheme for placing IoT applications on fog resources as well.

While these introduced papers present different interest-
ing approaches and algorithms for optimizing the placement
regarding various optimizing goals, yet still the problem of
a practical solution supporting the modeling, placement, de-
ployment, as well as managing of arbitrary cloud and IoT
applications remains without considering the applications’
structure, its data flow, the placement of its components, and
the deployment of the application itself in a holistic manner.

There are also practical oriented research works available
about optimizing the distribution of cloud applications, e.g.,
the MOCCA method by Leymann et al. [85], the optimal
distribution framework by Andrikopoulos et al. [86], and
CloudMIG by Frey and Hasselbring [87]. Typically, they are
optimizing based on the providers’ offerings and mainly taking
factors, such as costs or availability into account and are not
considering relevant data processing factors, e.g., the data flow
of the application in order to improve the performance of it.

With MOCHA [23], Rodrı́guez-Martı́nez and Roussopoulos
presented a database middleware system designed to intercon-
nect data sources distributed over the network. The goal of
MOCHA is to improve performance by reducing the amount
of data that needs to be transferred. Therefore, data reducing
queries are moved to the location where the data resides,
whereas in case of data inflating queries the data to be pro-
cessed is moved to the query. However, besides the point that
their approach is limited to databases, only selective queries
stored in its catalog can be shipped by MOCHA, whereas
in our approach, by using TOSCA-based deployment models,
any component is supported to be shipped and deployed.

Regarding the transformation into executable TOSCA mod-
els, Hirmer and Mitschang [88] proposed an approach to trans-
form non-executable data mashup plans into an executable
format, by using categorized patterns and requirements, for
example, robustness, security, and time sensitiveness. While
their approach focuses on data processing and integration
scenarios, their goal is not to improve the performance of the
application by placing components depending on factors, for
example, data size or data flow, but to ease the integration and
execution of data-intensive cloud applications in general.

To our best knowledge, this work is the first deployment
model-based approach, that enables the automated placement
of components of data processing cloud and IoT applications
in a practical way, that not only improves the performance of
such applications depending on its data flow, but also supports
its lifecycle, i.e., modeling, deployment and management of it.
Moreover, in contrast to many mono-objective approaches, our
proposed approach also supports the specification of further
deployment restrictions and requirements, for example, re-
stricting the deployment according to data privacy regulations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a practical approach for auto-
matically placing components of data processing cloud appli-
cations, among others, based on the data flow and different
characteristics of the single components. Therefore, a novel
method as well as algorithms supporting this method were pre-
sented. The approach aims to improve the performance of dis-
tributed applications, by placing data processing components
as close as possible to the data sets that should be processed.
The approach is validated by a prototypical implementation
based on the TOSCA standard and the open-source ecosystem
OpenTOSCA. However, since TOSCA can be mapped to
the Essential Deployment Metamodel, our approach is not
only restricted to TOSCA but can be applied to any other
declarative deployment modeling language. We evaluated our
prototype under different scenarios and investigated the impact
of the size of the deployment models and the amount of
available cloud providers on the performance of the prototype.

We plan to extend the approach to support more characteris-
tics for the placement, for example, the current transfer speed
between locations. In order to determine the transfer speed
or transfer quality in general between different locations, we
plan to generate some kind of testing deployment model first,
for measuring the connection quality in between preselected
locations. Moreover, we want to integrate an additional step
about provisioning huge amounts of data into our method.

ACKNOWLEDGMENTS

This work was partially funded by the BMWi project In-
dustrial Communication for Factories – IC4F (01MA17008G),
the DFG project DiStOPT (252975529), and the DFG’s Ex-
cellence Initiative project SimTech (EXC 2075 – 390740016).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[2] F. Leymann, “Cloud Computing: The Next Revolution in IT,” in Pro-
ceedings of the 52th Photogrammetric Week. Wichmann Verlag, Sep.
2009, pp. 3–12.

[3] V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A Survey on Concepts,
Applications, and Challenges in Cyber-Physical Systems,” KSII Trans-
actions on Internet and Information Systems, 2014.

[4] R. L. Villars, C. W. Olofson, and M. Eastwood, “Big data: What It Is
and Why You Should Care,” White Paper, IDC, vol. 14, pp. 1–14, 2011.

[5] Y. Guo, X. Hu, B. Hu, J. Cheng, M. Zhou, and R. Y. K. Kwok, “Mobile
Cyber Physical Systems: Current Challenges and Future Networking
Applications,” IEEE Access, vol. 6, pp. 12 360–12 368, 2017.

[6] S. A. Haque, S. M. Aziz, and M. Rahman, “Review of Cyber-Physical
System in Healthcare,” International Journal of Distributed Sensor
Networks, vol. 10, no. 4, p. 217415, 2014.

[7] F. Shrouf and G. Miragliotta, “Energy management based on Internet
of Things: Practices and framework for adoption in production manage-
ment,” Journal of Cleaner Production, 2015.

[8] A. Szalay, “Extreme Data-Intensive Scientific Computing,” Computing
in Science & Engineering, vol. 13, no. 6, pp. 34–41, 2011.

[9] M. Falkenthal, U. Breitenbücher, M. Christ, C. Endres, A. W. Kempa-
Liehr, F. Leymann, and M. Zimmermann, “Towards Function and Data
Shipping in Manufacturing Environments : How Cloud Technologies
leverage the 4th Industrial Revolution,” in Proceedings of the 10th

Advanced Summer School on Service Oriented Computing. IBM
Research Division, 2016, pp. 16–25.

[10] M. Zimmermann, U. Breitenbücher, M. Falkenthal, F. Leymann, and
K. Saatkamp, “Standards-based Function Shipping - How to use TOSCA
for Shipping and Executing Data Analytics Software in Remote Man-
ufacturing Environments,” in Proceedings of the 2017 IEEE 21st Inter-
national Enterprise Distributed Object Computing Conference (EDOC).
IEEE Computer Society, 2017, pp. 50–60.

[11] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data,” Information
Sciences, vol. 275, pp. 314–347, 2014.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of
Cloud Computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[13] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[14] M. Zimmermann, U. Breitenbücher, and F. Leymann, “A Method and
Programming Model for Developing Interacting Cloud Applications
Based on the TOSCA Standard,” in Enterprise Information Systems, ser.
Lecture Notes in Business Information Processing, vol. 321. Springer
International Publishing, 2018, pp. 265–290.

[15] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger,
“Integrated Cloud Application Provisioning: Interconnecting Service-
Centric and Script-Centric Management Technologies,” in On the Move
to Meaningful Internet Systems: OTM 2013 Conferences (CoopIS 2013).
Springer, Sep. 2013, pp. 130–148.

[16] T. Eilam, M. H. Kalantar, A. V. Konstantinou, G. Pacifici, J. A.
Pershing, and A. Agrawal, “Managing the Configuration Complexity
of Distributed Applications in Internet Data Centers,” Communications
Magazine, vol. 44, no. 3, pp. 166–177, 2006.

[17] M. Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Leymann,
K. Saatkamp, and J. Soldani, “The Essential Deployment Metamodel:
A Systematic Review of Deployment Automation Technologies,” SICS
Software-Intensive Cyber-Physical Systems, 2019.

[18] OASIS, Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[19] ——, TOSCA Simple Profile in YAML Version 1.2, Organization for the
Advancement of Structured Information Standards (OASIS), 2019.

[20] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable
Automated Deployment and Management of Cloud Applications,” in
Advanced Web Services. Springer, 2014, pp. 527–549.

[21] U. Srivastava, K. Munagala, and J. Widom, “Operator Placement for In-
network Stream Query Processing,” in Proceedings of the Twenty-fourth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems. ACM, 2005, pp. 250–258.

[22] Z. Mahmood, “Data Location and Security Issues in Cloud Computing,”
in 2011 International Conference on Emerging Intelligent Data and Web
Technologies. IEEE, 2011, pp. 49–54.

[23] M. Rodrı́guez-Martı́nez and N. Roussopoulos, “MOCHA: A Self-
extensible Database Middleware System for Distributed Data Sources,”
in Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data. ACM, 2000, pp. 213–224.

[24] M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Algorithm,”
in ACM Sigplan Notices, vol. 26, no. 6. ACM, 1991, pp. 30–44.

[25] Z. Guo, G. Fox, and M. Zhou, “Investigation of Data Locality in
MapReduce,” in Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid). IEEE
Computer Society, 2012, pp. 419–426.

[26] A. Bergmayr, U. Breitenbücher, N. Ferry, A. Rossini, A. Solberg,
M. Wimmer, and G. Kappel, “A Systematic Review of Cloud Modeling
Languages,” ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–38,
2018.

[27] C. Endres, U. Breitenbücher, M. Falkenthal, O. Kopp, F. Leymann, and
J. Wettinger, “Declarative vs. Imperative: Two Modeling Patterns for
the Automated Deployment of Applications,” in Proceedings of the 9th

International Conference on Pervasive Patterns and Applications. Xpert
Publishing Services, Feb. 2017, pp. 22–27.

[28] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, and
J. Wettinger, “Combining Declarative and Imperative Cloud Application
Provisioning based on TOSCA,” in International Conference on Cloud
Engineering (IC2E 2014). IEEE, Mar. 2014, pp. 87–96.

[29] M. J. Franklin, B. T. Jónsson, and D. Kossmann, “Performance Tradeoffs
for Client-server Query Processing,” in Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data. ACM,
1996, pp. 149–160.

[30] D. W. Cornell, D. M. Dias, and S. Y. Philip, “On Multisystem Coupling
Through Function Request Shipping,” IEEE Transactions on Software
Engineering, no. 10, pp. 1006–1017, 1986.

[31] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A Case for Intelligent RAM,”
IEEE micro, vol. 17, no. 2, pp. 34–44, 1997.

[32] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mcken-
zie, “Computational RAM: Implementing Processors in Memory,” IEEE
Design Test of Computers, vol. 16, no. 1, pp. 32–41, 1999.

[33] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-Data Processing: Insights from a
MICRO-46 Workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, 2014.

[34] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[35] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles, Bolton Landing, NY, 2003, pp. 20–43.

[36] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Proceedings of the 2010 IEEE 26th Sym-
posium on Mass Storage Systems and Technologies (MSST ’10). IEEE
Computer Society, 2010, pp. 1–10.

[37] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, pp. 24–31, 2015.

[38] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and I. Foster, “Secure,
Efficient Data Transport and Replica Management for High-Performance
Data-Intensive Computing,” in 2001 18th IEEE Symposium on Mass
Storage Systems and Technologies. IEEE, 2001, pp. 13–28.

[39] E. Deelman and A. Chervenak, “Data Management Challenges of Data-
Intensive Scientific Workflows,” in 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid, 2008, pp. 687–692.

[40] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159–175, 2018.

[41] R. Meunier, “The Pipes and Filters Architecture,” in Pattern Languages
of Program Design, 1995, pp. 427–440.

[42] P. Hirmer, U. Breitenbücher, T. Binz, and F. Leymann, “Automatic
Topology Completion of TOSCA-based Cloud Applications,” in GI-
Jahrestagung. GI, 2014, vol. P-251, pp. 247–258.

[43] K. Saatkamp, U. Breitenbücher, O. Kopp, and F. Leymann, “Topology
Splitting and Matching for Multi-Cloud Deployments,” in Proceedings
of the 7th International Conference on Cloud Computing and Services
Science (CLOSER 2017). SciTePress, 2017, pp. 247–258.

[44] A. Panarello, U. Breitenbücher, F. Leymann, A. Puliafito, and M. Zim-
mermann, “Automating the Deployment of Multi-Cloud Applications
in Federated Cloud Environments,” in Proceedings of the 10th EAI
International Conference on Performance Evaluation Methodologies and
Tools (VALUETOOLS’16). ICST, 2017, p. 194–201.

[45] Z. U. Rehman, F. K. Hussain, and O. K. Hussain, “Towards Multi-
criteria Cloud Service Selection,” in 2011 Fifth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), 2011, pp. 44–48.

[46] U. Breitenbücher, C. Endres, K. Képes, O. Kopp, F. Leymann, S. Wag-
ner, J. Wettinger, and M. Zimmermann, “The OpenTOSCA Ecosystem
- Concepts & Tools,” European Space project on Smart Systems, Big
Data, Future Internet -Towards Serving the Grand Societal Challenges
-Volume 1: EPS Rome, pp. 112–130, 2016.

[47] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11th International Conference on Service-Oriented Computing
(ICSOC). Springer, 2013, pp. 700–704.

[48] M. Zimmermann, F. W. Baumann, M. Falkenthal, F. Leymann, and
U. Odefey, “Automating the Provisioning and Integration of Ana-
lytics Tools with Data Resources in Industrial Environments using
OpenTOSCA,” in Proceedings of the 2017 IEEE 21st International
Enterprise Distributed Object Computing Conference Workshops and
Demonstrations (EDOCW 2017). IEEE Computer Society, 2017, pp.
3–7.

[49] A. S. Alashaikh and E. A. Alanazi, “A Survey of Preferences in Virtual
Machine Placement,” CoRR, vol. abs/1907.07778, 2019.

[50] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to Place Your
Apps in the Fog - State of the Art and Open Challenges,” CoRR, vol.
abs/1901.05717, 2019.

[51] A. Laghrissi and T. Taleb, “A Survey on the Placement of Virtual Re-
sources and Virtual Network Functions,” IEEE Communications Surveys
Tutorials, vol. 21, no. 2, pp. 1409–1434, 2019.

[52] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective
ant colony system algorithm for virtual machine placement in cloud
computing,” Journal of Computer and System Sciences, vol. 79, no. 8,
pp. 1230 – 1242, 2013.

[53] Q. Zheng, R. Li, X. Li, N. Shah, J. Zhang, F. Tian, K.-M. Chao, and
J. Li, “Virtual machine consolidated placement based on multi-objective
biogeography-based optimization,” Future Generation Computer Sys-
tems, vol. 54, pp. 95 – 122, 2016.

[54] X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual machine
placement algorithm with balanced and improved resource utilization in
a data center,” Mathematical and Computer Modelling, vol. 58, no. 5,
pp. 1222 – 1235, 2013.

[55] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and
D. H. Lorenz, “Guaranteeing High Availability Goals for Virtual Ma-
chine Placement,” in 2011 31st International Conference on Distributed
Computing Systems. IEEE, 2011, pp. 700–709.

[56] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N. Chang,
M. R. Lyu, and R. Buyya, “Cloud Service Reliability Enhancement
via Virtual Machine Placement Optimization,” IEEE Transactions on
Services Computing, vol. 10, no. 6, pp. 902–913, 2017.

[57] F. Machida, Masahiro Kawato, and Y. Maeno, “Redundant Virtual
Machine Placement for Fault-tolerant Consolidated Server Clusters,” in
2010 IEEE Network Operations and Management Symposium - NOMS
2010. IEEE, 2010, pp. 32–39.

[58] Z. Cao and S. Dong, “An energy-aware heuristic framework for virtual
machine consolidation in Cloud computing,” The Journal of Supercom-
puting, vol. 69, no. 1, pp. 429–451, 2014.

[59] X. Fu and C. Zhou, “Virtual machine selection and placement for
dynamic consolidation in Cloud computing environment,” Frontiers of
Computer Science, vol. 9, no. 2, pp. 322–330, 2015.

[60] G. Wu, M. Tang, Y.-C. Tian, and W. Li, “Energy-Efficient Virtual
Machine Placement in Data Centers by Genetic Algorithm,” in Neural
Information Processing, T. Huang, Z. Zeng, C. Li, and C. S. Leung,
Eds. Springer, 2012, pp. 315–323.

[61] J. Araujo, P. Maciel, E. Andrade, G. Callou, V. Alves, and P. Cunha, “De-
cision making in cloud environments: an approach based on multiple-
criteria decision analysis and stochastic models,” Journal of Cloud
Computing, vol. 7, no. 1, p. 7, 2018.

[62] V. Cardellini, E. Casalicchio, F. Lo Presti, and L. Silvestri, “SLA-aware
Resource Management for Application Service Providers in the Cloud,”
in 2011 First International Symposium on Network Cloud Computing
and Applications. IEEE, 2011, pp. 20–27.

[63] H. N. Van, F. D. Tran, and J.-M. Menaud, “Autonomic virtual resource
management for service hosting platforms,” in 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing. IEEE, 2009,
pp. 1–8.

[64] M. Alicherry and T. V. Lakshman, “Optimizing Data Access Latencies
in Cloud Systems by Intelligent Virtual Machine Placement,” in 2013
Proceedings IEEE INFOCOM. IEEE, 2013, pp. 647–655.

[65] J. T. Piao and J. Yan, “A Network-aware Virtual Machine Placement and
Migration Approach in Cloud Computing,” in 2010 Ninth International
Conference on Grid and Cloud Computing. IEEE, 2010, pp. 87–92.

[66] J. Kuo, H. Yang, and M. Tsai, “Optimal Approximation Algorithm of
Virtual Machine Placement for Data Latency Minimization in Cloud
Systems,” in IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications. IEEE, 2014, pp. 1303–1311.

[67] J. Li, A. Deshpande, and S. Khuller, “Minimizing Communication Cost
in Distributed Multi-query Processing,” in 25th International Conference
on Data Engineering. IEEE, 2009, pp. 772–783.

[68] Q. Zhu and G. Agrawal, “Resource Allocation for Distributed Streaming
Applications,” in 37th International Conference on Parallel Processing.
IEEE, 2008, pp. 414–421.

[69] L. Fischer, T. Scharrenbach, and A. Bernstein, “Scalable Linked Data
Stream Processing via Network-Aware Workload Scheduling,” in Pro-
ceedings of the 9th International Conference on Scalable Semantic Web
Knowledge Base Systems, vol. 1046, 2013, pp. 81–96.

[70] Z. Abrams and Jie Liu, “Greedy is Good: On Service Tree Placement for
In-Network Stream Processing,” in 26th IEEE International Conference
on Distributed Computing Systems (ICDCS’06). IEEE, 2006, pp. 72–
72.

[71] B. Gedik, H. G. Özsema, and Ö. Öztürk, “Pipelined fission for stream
programs with dynamic selectivity and partitioned state,” Journal of
Parallel and Distributed Computing, vol. 96, pp. 106–120, 2016.

[72] T. Li, J. Tang, and J. Xu, “A predictive scheduling framework for fast
and distributed stream data processing,” in 2015 IEEE International
Conference on Big Data (Big Data). IEEE, 2015, pp. 333–338.

[73] S. Rizou, F. Dürr, and K. Rothermel, “Solving the Multi-Operator Place-
ment Problem in Large-Scale Operator Networks,” in 2010 Proceedings
of 19th International Conference on Computer Communications and
Networks. IEEE, 2010, pp. 1–6.

[74] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
Operator Placement for Distributed Stream Processing Applications,” in
Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems (DEBS ’16). ACM, 2016, pp. 69–80.

[75] H. R. Arkian, A. Diyanat, and A. Pourkhalili, “MIST: Fog-based
data analytics scheme with cost-efficient resource provisioning for IoT
crowdsensing applications,” Journal of Network and Computer Applica-
tions, vol. 82, pp. 152 – 165, 2017.

[76] X. Meng, V. Pappas, and L. Zhang, “Improving the Scalability of Data
Center Networks with Traffic-aware Virtual Machine Placement,” in
2010 Proceedings IEEE INFOCOM. IEEE, 2010, pp. 1–9.

[77] A. Chatzistergiou and S. D. Viglas, “Fast Heuristics for Near-Optimal
Task Allocation in Data Stream Processing over Clusters,” in Proceed-
ings of the 23rd ACM International Conference on Information and
Knowledge Management (CIKM ’14). ACM, 2014, pp. 1579–1588.

[78] P. Smirnov, M. Melnik, and D. Nasonov, “Performance-aware scheduling
of streaming applications using genetic algorithm,” Procedia Computer
Science, vol. 108, pp. 2240–2249, 2017.

[79] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement of Replicated
Tasks for Distributed Stream Processing Systems,” in Proceedings of
the Fourth ACM International Conference on Distributed Event-Based
Systems (DEBS ’10). ACM, 2010, pp. 128–139.

[80] R. Eidenbenz and T. Locher, “Task Allocation for Distributed Stream
Processing,” in The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 2016, pp. 1–9.

[81] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive Online Scheduling
in Storm,” in Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems (DEBS ’13). ACM, 2013, pp. 207–
218.

[82] J. Xu, Z. Chen, J. Tang, and S. Su, “T-Storm: Traffic-Aware Online
Scheduling in Storm,” in 2014 IEEE 34th International Conference on
Distributed Computing Systems. IEEE, 2014, pp. 535–544.

[83] L. Gu, D. Zeng, S. Guo, Y. Xiang, and J. Hu, “A General Communi-
cation Cost Optimization Framework for Big Data Stream Processing
in Geo-Distributed Data Centers,” IEEE Transactions on Computers,
vol. 65, no. 1, pp. 19–29, 2016.

[84] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“SpanEdge: Towards Unifying Stream Processing over Central and
Near-the-Edge Data Centers,” in 2016 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2016, pp. 168–178.

[85] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S. Dustdar,
“Moving Applications to the Cloud: An Approach based on Application
Model Enrichment,” International Journal of Cooperative Information
Systems, vol. 20, no. 3, pp. 307–356, 2011.

[86] V. Andrikopoulos, S. Gómez Sáez, F. Leymann, and J. Wettinger,
“Optimal Distribution of Applications in the Cloud,” in Proceedings
of the 26th International Conference on Advanced Information Systems
Engineering (CAiSE). Springer, Jun. 2014, pp. 75–90.

[87] S. Frey and W. Hasselbring, “The CloudMIG Approach: Model-Based
Migration of Software Systems to Cloud-Optimized Applications,” Inter-
national Journal On Advances in Software, vol. 4, no. 3&4, pp. 342–353,
2011.

[88] P. Hirmer and B. Mitschang, “FlexMash – Flexible Data Mashups
Based on Pattern-Based Model Transformation,” in Rapid Mashup
Development Tools. Springer, 2016, pp. 12–30.

