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Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany

[firstname.lastname]@iaas.uni-stuttgart.de

Abstract—With the ongoing advances in the area of cloud
computing, Internet of Things, Industry 4.0, and the increasing
prevalence of cyber-physical systems and devices equipped with
sensors, the amount of data generated every second is rising
steadily. Thereby, the gathering of data and the creation of
added value from this data is getting easier and easier. However,
the increasing volume of data stored in the cloud leads to
new challenges. Analytics software and scalable platforms are
required to evaluate the data distributed all over the internet. But
with distributed applications and large data sets to be handled,
the network becomes a bottleneck. Therefore, in this work, we
present an approach to automatically improve the deployment
of such applications regarding the placement of data processing
components dependent on the data flow of the application. To
show the practical feasibility of our approach, we implemented
a prototype based on the open-source ecosystem OpenTOSCA.
Moreover, we evaluated our prototype using various scenarios.

Index Terms—Application Deployment, Deployment Automa-
tion, Data Locality, Data Flow, TOSCA

I. INTRODUCTION

Advances in Internet of Things (IoT) [1], cloud comput-
ing [2], and the increased usage of sensor-equipped devices
and Cyber-Physical Systems (CPS) [3], have led to a signif-
icantly increased amount of data stored in the cloud [4]. A
wide range of domains can benefit from new opportunities,
such as cost-savings through pay-per-use models, for example,
mobility [5], health care [6], energy management [7], and
scientific computing in general [8]. Also in the area of Industry
4.0, new use cases can be realized, for example, by deploying
the processing logic as close as possible to the data sources [9],
[10]. In order to enable data analysis providing new insights
and optimization potential, for instance, in manufacturing
processes, data from different sources and locations need to
be integrated, analyzed, and compared. However, with the
increasing amount of stored data, the network is becoming
a bottleneck and the movement of data from one location to
another becomes a problem [11], [12]. Thus, components need
to be distributed over different locations, e.g., private, public,
and edge clouds [13], depending on the specific requirements
as well as the locality of the data to be analyzed. However,
the distribution of applications leads to various challenges: re-
quired middleware and application components have to be
deployed and configured in order to obtain the required data
and to enable the communication between each other [14]. In
cases where the application and the overall deployment process
are highly complex, a manual deployment approach is error-
prone, time-consuming, and therefore, not efficient [15], [16].

The deployment and management of applications can be
automated using various deployment technologies, such as
(i) provider-specific systems, (ii) provider-independent, but
platform-specific technologies, (iii) general-purpose technolo-
gies [17], or furthermore, (iv) provider- and technology-
agnostic standards, such as the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [18]–[20].

However, the placement of application components regard-
ing their locality can vary depending on different character-
istics, for example, requirements of the data and the data
processing components. For instance, if the data from different
data sets, located in different data centers or countries should
be analyzed, dependent on the respective size of the data
and if the data can be preprocessed in order to reduce the
overall size, for example, by aggregating a time series, it can
make a significant difference where the processing logic is
located [21]. And thus, how much data needs to be moved
from one location to another. Furthermore, differences in data
privacy policies or laws may also lead to certain deployment
locations or prohibit some [22]. For complex applications,
processing multiple distributed data sets, the manual effort for
evaluating all generally possible deployment solutions regard-
ing the placement of components and data sets is immense.

In this paper, we tackle these challenges. We present
an approach, that automatically improves the deployment
of distributed applications regarding the placement of data
processing components and data sets by taking the following
factors into account: (i) the size of the data sets, (ii) the
data flow of the application, and (iii) further characteristics,
such as data privacy requirements, performance requirements,
and the Data Factor (DF) [23]. The Data Factor describes,
if and to what extent a data processing function is reducing
or inflating the volume of the processed data, and therefore,
how much data needs to be shipped from one location to
another after the function was applied to the data. The goal
is to reduce the amount of data that has to be transferred
over a long distance via the internet. Moreover, besides the
placement decision-making, our approach supports the general
deployment of applications by automatically (i) generating an
incomplete deployment model based on the data flow of an
application, (ii) completing this deployment model based on
the results of the placement algorithms for each component,
and (iii) deploying the data processing application itself. To
validate the practical feasibility of our approach, we present a
prototypical implementation based on the TOSCA standard.



The remainder of this paper is structured as follows. In
Section II, background, fundamentals, and a motivational
scenario are introduced. In Section III, the method of our
approach is described step by step. Our algorithms are pre-
sented in Section IV. In Section V, our approach is validated
by a prototypical implementation and evaluated. Section VI
discusses related work and Section VII concludes this paper.

II. FUNDAMENTALS, BACKGROUND
AND MOTIVATIONAL SCENARIO

In the following subsections, we first introduce some basic
information about deployment models, required for under-
standing the remainder of this paper. Moreover, we introduce
concepts of having the data to be processed as close as
possible to the components processing the data, called data
locality [24], [25]. For example, in cloud computing, the
higher the data locality, the less data needs to be transferred
over the network. Since data locality is not a new idea, we
present an overview of different areas and domains in which
data locality concepts are researched and applied. Furthermore,
we present a motivational scenario for our proposed approach.

A. Deployment Models and Topologies

Since the manual deployment of applications is too error-
prone, time-consuming, and requires an immense level of
technical expertise [15], [16], the automation of application
deployment is essential. Various deployment automation sys-
tems exist, supporting the automated and model-based deploy-
ment of applications [26]. Technically, deployment models
can be separated into declarative deployment models as well
as imperative deployment models [27]. Declarative deploy-
ment models describe the desired structure of an application
that shall be deployed. These models are based on directed
graphs and consists of components, their relations, as well
as properties [27]. They are also referred as topology-based
deployment models, or just short as topology of an application.
Imperative deployment models, on the other hand, describe
all the single deployment tasks required for the deployment
of an application. For declarative deployment models, these
activities can be inferred by a runtime based on the topology
of the application [28]. Since a variety of deployment systems
support declarative deployment models [26], the presented
approach is based on this kind of deployment models.

Figure 1 depicts an exemplary declarative deployment
model consisting of four main components: SourceDB, Pro-
cessor, ResultDB, and Monitor. Components have component
types, e.g., Grafana or Java-App. They are reusable and define
the semantics of a component. Components are connected us-
ing typed relations, e.g., hostedOn or connectsTo. For instance,
Monitor and ResultDB are hosted on an UbuntuVM provided
by AWS-EC2. In order to get the data, the Processor connects
to the SourceDB. Properties are used to provide additional
information, for example, the endpoint of OpenStack and
the credentials for AWS-EC2. Additionally, as stated by the
property State, the left stack consisting of SourceDB, MySQL-
DBMS, and UbuntuVM is already running on OpenStack.

Monitor
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ResultDB
(InfluxDB)

(Java)

Processor
(Java-App)

(UbuntuVM)

(AWS-EC2)

PW: ******
Region: us-east-1

(UbuntuVM)
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(MySQL-DB)

State: running

(OpenStack)

Endpoint: myos.org

(MySQL-DBMS)

State: running

(UbuntuVM)

State: running

hostedOn

connectsTo

dependsOn

Fig. 1. Exemplary declarative deployment model.

B. Data Locality

The basic idea of data locality is to have the data as close
as possible to the function processing this data [24], [25],
for example, on the same physical node. Data locality can
be achieved by the two paradigms of function shipping and
data shipping [9], [29]. Function shipping is applied when the
functionality is shipped or provisioned close to the data to be
processed. Data shipping, on the other side, is applied when
the data is shipped to the functionality processing the data. In
the following we want to give a first brief overview of areas
in which the concept of data locality has been researched.

Cornell et al. [30] examined the performance of coupled
multi-system database systems using a function request ship-
ping approach and a data sharing approach. In the first
approach, the database is partitioned among the multi-system,
and only the function requests are shipped between them. In
the latter approach, the idea is to share the data among the
multi-system by sharing a common database at disk level.
The main goal of both approaches is to avoid transferring an
unnecessary amount of data between the single systems.

In the area of microprocessors and microcomputers, re-
search was conducted about merging processing and memory
into a single chip in order to reduce overall data movement,
and therefore, increase the overall performance [31]–[33].

MapReduce [34] presents a programming model addressing
these data locality issues in order to improve the performance
of data-intensive applications in the area of cloud computing
and Big Data [25]. MapReduce simplifies the development and
execution of large-scale data processing jobs, by decomposing
and distributing the tasks on distributed file systems and
gathering as well as integrating the results afterwards again.
It is used, e.g., by Google File System [35] and Hadoop
Distributed File System [36] to handle large amounts of data.

While in Big Data analytics, the data processing is typically
performed in centralized ways, for example, in a Big Data
warehouse, in edge analytics [37] the data processing is done
near the active device or even directly on the device itself.
Especially in IoT with lots of connected devices, this approach
is often used in order to reduce the effort and required time
of sending device data into the cloud or an on-premise server.
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Fig. 2. Motivating scenario of an application for analyzing data from different locations.

In high-performance computing systems, shipping the data
often is the preferred option, since in such systems, typically
performing CPU-intensive computations, the effort of trans-
ferring the data to the computing units is low compared to the
computing time [38]. However, within the context of Big Data,
IoT, cloud, and edge computing, the approach of transferring
large amounts of data to the computing components, usually
would be significantly slower than moving the computing com-
ponents as near as possible to the data to be processed [12].

Furthermore, in the area of scientific workflows, especially
when they are greatly data-intensive, location as well as
distribution depending on the size of the data to be processed
are acknowledged research challenges to be solved [39], [40].

As this brief overview shows, there are different approaches
for the placement problem proposed in the literature, located
in different domains and based on different assumptions and
optimization goals. A more precise differentiation of our work
to existing related work is given in the related work section.

C. Motivating Scenario

For emphasizing the motivation of this research work, a
motivating scenario for placing components of data processing
cloud applications based on their data flow is presented in
this section. The scenario illustrates the connection of different
data sets to be analyzed with the components to analyze them.

In Figure 2, the exemplary data processing cloud application
is depicted, consisting of data processing components and var-
ious data sets to be analyzed. Besides the single components
for processing the data and the data sets, the figure also shows
the data flow of the overall application. On the right side, two
different data sets are shown: Research Data 2 stored in a
MongoDB database and Research Data 3 stored in a MySQL
database. Both databases containing the research data sets are
already available and are hosted on the two cloud providers
AWS and Azure. While Research Data 2 has a volume of 10
terabytes and is stored in the region US-West, Research Data 3
has a volume of 10 terabytes as well, but is stored in the region
US-East. Moreover, both databases are managed by third-

parties, which are only granting public read access to them.
On the left side of the figure, the data scientist is depicted.
He has gathered 5 terabytes of data (Research Data 1),
stored in a PostgreSQL, hosted on a local infrastructure, for
example, a private cloud or some legacy system. The other
components of the depicted application, for example, the three
Adapters for getting the data, the Aggregator for aggregating
Research Data 2 and Research Data 3, the Analytics Service
for analyzing the data, and the Monitor for showing the results,
are developed and managed by the scientist as well. The goal
of the data scientist is to analyze and compare the two data
sets stored in the US with his locally available data set.

However, since the both data sets available in the US
together are 20 terabytes in size, manually downloading the
data from the US in order to process and analyze the data
locally would be time-consuming. Provisioning the entire
application in a local environment and pulling the data from
the databases would be time-consuming as well. Likewise,
provisioning all required components and uploading 5 ter-
abytes of data near to the data in the US would be time-
consuming and not efficient. Since a huge amount of data
needs to be transferred from different locations to a common
location, in these scenarios, as described in Subsection II-B,
the network can be seen as a serious bottleneck, regarding
the performance of the application. Depending on the data
flow as well as the characteristics of the single components
(pre-)processing the data, for example, if they are reducing
or inflating the data, the performance of the application can
be improved by distributing the components. Data reducing
processing steps are, for example, steps aggregating time series
or selecting only subsets, for example, by removing irrelevant
or redundant data from the source data set. Data inflating
are processing steps interpolating missing values or unzipping
archives, for example. Thus, the goal of our approach is
to place data processing components and data sets to be
provisioned dependent on the characteristics of every single
component as well as the data flow of the overall application.
And therefore, reducing the transferred data in the system.
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Fig. 3. Overview of the method for placing the components of data processing cloud applications.

III. METHOD FOR PLACING COMPONENTS
OF DATA PROCESSING APPLICATIONS

In this section, we present our method for placing the
components of data processing cloud applications regarding
their location. An overview of the method is depicted in
Figure 3. The goal is to distribute the components of data
processing applications based on the data flow of the overall
application and the characteristics of the single components, in
order to reduce the amount of data that needs to be moved from
one location to another over a long distance via the network.

A. Model Data Flow

In the first step, a data flow model representing (i) the data
sources, (ii) the components of the data processing application,
(iii) the data flow between the data sources and these compo-
nents, and (iv) characteristics, such as the size of the data
sets and the Data Factor (DF) has to be created. Again, the
Data Factor describes, if and to what extent a data processing
component (i) reduces the data it processes (DF < 1),
(ii) inflates it (DF > 1), or (iii) is neutral regarding the size
of the data (DF = 1). This factor is required in order, for
example, to place a component reducing the size of data that
needs to be transferred to another location, as near as possible
to the data it should process. On the other hand, a component
inflating the size of data should be placed as near as possible
to its target processing location. In case of a data size neutral
component, the component can be placed flexible, as it is not
affecting the amount of data that needs to be transferred.

For modeling the data flow, we use a pipes-and-filters [41]
oriented approach. A pipes-and-filters based model is a di-
rected graph consisting of nodes and edges. The nodes are
called filters and the edges are called pipes. Filters have input
and output data and are processing steps, i.e., components, for
example, to aggregate or interpolate data. Pipes connect filters
and describe the direction of the data flow. An example of
such a model is shown in Figure 3 below step one. By using
pipes-and-filters as well as the annotated Data Factor for each
filter, the data flow of the overall application can be modeled.

B. Generate Incomplete Topology

In the second step of our method, an incomplete topology,
i.e., a declarative deployment model with open requirements,
is generated using the data flow model from the previous step.

Based on the names of the components of the data flow
model, either, (i) an already existing and matching component
can be found in a repository or (ii) a corresponding component
needs to be created and added to the topology. For example, in
our motivation scenario, data processing components, such as
the Analytics Service or Adapter-1 are mapped to concrete ex-
ecutable implementations. For instance, the Analytics Service
may be implemented as a Java application able to run on an
Apache Flink framework and the adapter as a simple Python
script, which can read the data from the Research Data 1
data source. The data flow itself is transformed by adding a
corresponding relation for each data flow edge to the topology.
These relations are set to the type of connectsTo, which defines
a connection between two components or a component and a
data source. The direction of relations is based on whether
a component pulls or pushes data, which can be annotated
in the data flow. For example, the adapter components in
our motivating scenario initiate the communication with the
databases and pull the data from them. Therefore, the adapters
will be the sources of the connectsTo relations between them
and the databases. After adding all components and relations
to the topology, each data source component is automatically
annotated with an initial locality group, specifying that the
data set it contains is available at the specified location.
Furthermore, this defines, that the data sources are already
running on some hosting environment and don’t have to be
provisioned first. The processing components, however, have
to be provisioned either close to these data sources as the
processed data may be reduced by them, or close to another
processing component in cases where the data is inflated.

C. Add Deployment Requirements

In the optional step three, requirements regarding the de-
ployment of the components themselves can be specified.
Required computing power, storage capacity, as well as other
restrictions in the selection of possible hosting locations are
such requirements. For instance, that some data and the
components processing this data are only allowed to be
hosted in a specific country or on a companies’ private cloud,
because of data privacy policies or other legal regulations.
In our motivating scenario, for example, the data processing
components Analytics Service and Aggregator may require
particular computing power, such as CPU and RAM from



the hosting systems. Additionally, the Adapter-1 component
for reading the data from the data source Research Data 1
may have the requirement, that it must be deployed, e.g., on a
specific private cloud because of data privacy policies or laws.

D. Locality Grouping and Placing

In the fourth step, the placement of the data processing
components in relation to the data source components is
calculated. As input, the data flow model created in the first
step, as well as the incomplete deployment model along with
the specified requirements and initial locality groups from
steps two and three are required. Based on the data flow,
the Data Factor, and the specified component deployment
requirements, the processing components are grouped together,
describing that these components should be deployed close
to each other. In our motivating scenario, for example, the
Aggregator should be placed near to the Adapters 2 and 3,
as it reduces the amount of data to be transferred. When
all processing components are assigned to a locality group,
at the end of this step, each group is also assigned to a
specific provider which is able to host the components and
fulfill all specified requirements. In Section IV, the algorithms
to calculate the locality groups and place the components
accordingly in an automated manner, are described in detail.

E. Topology Completion

In step five, the so far incomplete deployment model is
completed based on the location and provider assignments
performed in step four. This can be done manually or auto-
mated by using a completion approach for deployment models,
as proposed, for example, in [42]–[44]. Typically, these
approaches recursively iterate over all components with open
requirements and search for matching components fulfilling
these requirements. After the matching components are added
to the incomplete deployment model and therefore, all require-
ments should be fulfilled, the deployment model is assumed
to be deployable. In our motivating scenario, for example, the
Adapter 2 may be implemented using Java and has a require-
ment for a Java runtime, which in turn has a requirement for
a virtual machine. Therefore, the Java component with the
requirement could be replaced by a stack containing the Java
component, the Java runtime, and a virtual machine hosted
by some cloud provider. If the grouping of step four does
not allow a successful completion, the problematic component,
e.g., a cloud provider, not supporting the computing power or
privacy requirements, is blacklisted. Furthermore, the grouping
is done again, without using this specific cloud provider.

F. Application Deployment

In step six of our method, the application is deployed in
an automated manner using a declarative deployment system.
This step is depending on the used declarative deployment
model, i.e., the used modeling language must be supported
by the deployment system. For our proposed method, any
deployment system supporting a declarative deployment model
enabling to model components and their relations is sufficient.

IV. ALGORITHMS

For automating step four of our method, we propose a series
of five algorithms. First, we describe the high-level algorithm
and afterwards details about how to assign a location to a
component based on the data flow. Finally, an algorithm is
presented to select concrete providers for the components with
assigned locations, based on requirements, such as privacy.

Algorithm 1 determineLocalityAndPlacement(dfm, d)
1: // dfm => data flow model from step one
2: // d => incomplete deployment model from step three
3: while (assignmentPossible(d)) do
4: assignToLocations(d, dfm)
5: assignToProviders(d)
6: try
7: return completeModel(d)
8: catch (fault)
9: deleteLocationAssignments(d)

10: addProvidersToBlackList(d, fault)
11: end try
12: end while
13: throw fault

The high-level algorithm of our approach is described in
Algorithm 1. It gets the data flow model dfm from step one
and the incomplete deployment model d, which is generated
in step two and enriched in step three, as input. The algorithm
loops until a completed deployment model is created or no
further valid provider assignment can be found (line 3). For
this, the components are assigned to locations where they
should reside to enable an efficient data flow during runtime
(line 4). This location assignment of components is described
in detail in Algorithm 2. Then, the components are assigned
to providers, which provide infrastructure for the selected
locations, based on requirements like privacy (line 5). The
assignment to providers is described in Algorithm 5. After-
wards, the incomplete deployment model can be completed
using the provider assignments (line 7). An example of such
a completion was given in Subsection III-E. Furthermore,
we extended the topology completion algorithm introduced
by Hirmer et al. [42] to return useful fault messages if a
completion fails, which are utilized by our algorithms. If the
completion is successful, the algorithm terminates and returns
the completed deployment model, which can be deployed in
step six of our method. If the calculated provider assignment
is not possible due to unfulfilled requirements, the completion
throws a fault with the components and selected providers that
led to the error. The location and provider assignments are
deleted from the deployment model and the invalid providers
are added to the blacklists of the components (lines 9 and
10). If the blacklists lead to the case that no further provider
assignment is possible (line 3), the algorithm throws a fault
message (line 13) and the user has to adapt the model
manually. However, this case can only occur if none of the
available providers can fulfill the requirements of a component,
which would lead to an undeployable deployment model.



Algorithm 2 assignToLocations(dfm, d)
1: // dfm => data flow model from step one
2: // d => incomplete deployment model from step three
3: if (|{c | c ∈ components(d) : hasLocation(c)}| <= 1)

then
4: return assignAllComponentsToSameLocation(d)
5: end if
6: while (∃c ∈ components(d) : ¬hasLocation(c)) do
7: assignComponent(dfm,getNextUnassignedComp(d))
8: end while

Algorithm 2 is used to assign components to locations based
on the data flow and the Data Factor. The algorithm gets the
data flow model and the incomplete deployment model as
input. First, it checks if one or less components have already an
assigned location (line 3). For this, the functions components,
which returns the set of components in a deployment model
and hasLocation, that checks if a component has a location
label attached, are used. Components with an already assigned
location could, for example, be the Research Data in Figure 2,
that is stored at a certain location, or a component which has
to be placed at a dedicated location, due to legal regulations.
In the case, that just one or even none component is already
assigned to a location, it is most efficient to assign all
components to the same location, as this avoids to transfer data
between different locations (line 4). Otherwise, an unassigned
component is selected as long as there are such components
(line 6) and assigned to a location (line 7) using Algorithm 3.

Algorithm 3 assignComponent(dfm, c)
1: // dfm => data flow model from step one
2: // c => selected component to assign a location to
3: locations := {}
4: for (pipe ∈ dfm : target(pipe) = c) do
5: if (¬hasLocation(source(pipe))) then
6: return
7: end if
8: label := getLocation(source(pipe))
9: if (∃loc ∈ locations : π1(loc) = label) then

10: new := (label, π2(loc) + pipeDataSize(pipe))
11: locations← locations \ {loc} ∪ {new}
12: else
13: new := (label, pipeDataSize(pipe))
14: locations← locations ∪ {new}
15: end if
16: end for
17: for (loc ∈ locations : max(π2(loc)) do
18: // is there a provider supporting the requirements
19: // and locality group which is not blacklisted
20: if (providerAvailable(c, π1(loc))) then
21: setLocation(c, π1(loc))
22: return
23: end if
24: locations← locations \ {loc}
25: end for

Algorithm 3 gets the data flow model and the selected com-
ponent c, which needs to be assigned as input. The component
c must not have an incoming pipe for which the source is
not yet assigned to enable the determination of the location
from which the most data flows to component c. Therefore,
all pipes which have component c as target are iterated (line
4) and if one of the sources has no assigned location, the
algorithm terminates without an assignment (lines 5 to 7). In
this case, the algorithm is invoked by Algorithm 2 with another
component in the next iteration. There is always at least one
component that fulfills this condition, as per assumption, the
input data flow models are not allowed to contain loops. If
the source has a location assigned, the name of the location
is retrieved and it is checked if a tuple with the same location
name was already added to the locations variable before
(lines 8 and 9). Then, the data flow size for the current pipe is
calculated using Algorithm 4 and added to the sum of flows
from the old tuple, which is replaced by a new tuple with the
same location name and the calculated sum (lines 10 and 11).
Otherwise, a new tuple with the location name and the data
flow size of the current pipe is created and added to locations
(lines 13 and 14). Thus, locations contains the data size that
needs to be transferred to the component c grouped by the
location where the data comes from. Hence, the assignment
of c to the location with the maximum data size in locations
is most efficient in terms of data flow, as this leads to the
minimal amount of data that needs to be transferred to c
between different locations. For our location assignment, we
assume, that the transfer of data within a single location, for
instance, within the same data center is faster than between
different locations. If this assignment is not possible, because
there is no provider available in the location that is not on the
black list of the component c, the location is removed from
the set and the new maximum is calculated (lines 17 to 25).

Algorithm 4 pipeDataSize(pipe)
1: // pipe => pipe to calculate the data size flowing through
2: if (hasIncomingP ipe(source(pipe))) then
3: dataSize := 0
4: for (p ∈ getIncomingP ipes(source(pipe))) do
5: dataSize← dataSize+ pipeDataSize(p)
6: end for
7: return dataSize ∗ getDataFactor(source(pipe))
8: end if
9: return getDataSourceSize(source(pipe))

To determine the data size that needs to be transferred over
a given pipe, Algorithm 4 uses the Data Factor and the data
size of the transitively connected data sources. If the source
filter of the given pipe has no incoming pipes, it is assumed
to be a data source and therefore, its attribute specifying the
size can be directly returned (line 9). Otherwise, the algorithm
iterates over all incoming pipes (line 4), recursively calls the
pipeDataSize function in order to get the amount of data that
needs to be transferred over the pipe (line 5), and multiplies
the result with the Data Factor of the source filter (line 7).



Algorithm 5 assignToProviders(d)
1: // d => deployment model with assigned locations
2: providers := {}
3: for (c ∈ components(d)) do
4: for (p ∈ getV iableProviders(c)) do
5: if (∃prov ∈ providers : π1(prov) = p) then
6: new := (p, π2(prov) ∪ {c})
7: providers← providers \ {prov} ∪ {new}
8: else
9: providers← providers ∪ {(p, {c})}

10: end if
11: end for
12: end for
13: while (∃c1 ∈ components(d) : ¬hasProvider(c1)) do
14: nextProv := p ∈ {prov ∈ providers :

max(|{c | c ∈ π2(prov) : ¬hasProvider(c)}|)}
15: for (c2 ∈ π2(nextProv) : ¬hasProvider(c2)) do
16: setProvider(c2, π1(nextProv))
17: end for
18: end while

After assigning components to locations, they have to be
placed on a concrete provider that supports this location
to enable the completion of the deployment model and the
deployment of the application. This provider assignment is
performed by Algorithm 5, which gets the incomplete deploy-
ment model d as input. First, it is determined which of the
available providers supports which components that need to be
assigned. For this, the algorithm iterates over each component
in the deployment model d (line 3) and retrieves all providers
that support the current component by calling the function
getViableProviders (line 4). The function getViableProviders
checks for each available provider in the assigned location,
if the provider fulfills the non-functional requirements of the
component. For example, it checks if the provider conforms
to the privacy requirements of the component or if it can
provide enough computing resources. However, this function
can be extended with arbitrary selection logic for currently not
considered requirements, for example, costs of the required
resources or reliability [45]. If the provider was already added
to the variable providers, the component is added to the set
of supported components in the provider tuple (lines 5 to 7).
Otherwise, a new tuple for the provider is created and only
the current component is added to the set of supported compo-
nents (lines 9). Afterwards, the components are assigned to a
provider until all components of the deployment model have a
valid assignment (lines 13 to 18). For this, the next provider is
determined, which supports the most components that are not
yet assigned (line 14) and these components are then assigned
to the provider (line 15 to 17). Therefore, as many components
as possible are assigned to the same provider to profit from
a faster connection within the same data center or possible
discounts. After all components are assigned to a provider,
the still incomplete deployment model can now be completed
accordingly to the results of this algorithm (cf. line 7 in
Algorithm 1). Afterwards the application can be deployed.

V. PROTOTYPE, VALIDATION AND EVALUATION

The concepts, presented in this paper build upon the Essen-
tial Deployment Metamodel (EDMM), providing a technology-
independent baseline for deployment automation research and
a common understanding of declarative deployment mod-
els [17]. In the course of a systematic review, Wurster et
al. [17] derived the essential parts supported by declarative
deployment automation technologies and showed how they
can be mapped to EDMM. In order to validate the practical
feasibility of our approach, we use the deployment model-
ing language TOSCA [18], [19] for the following reasons:
(i) it provides a vendor- and technology-agnostic modeling
language, (ii) it is fully compliant with EDMM [17], and (iii) it
is ontologically extensible [26]. Moreover, for implementing
our prototype we extended the open-source OpenTOSCA
ecosystem [46], which provides a tool-chain for modeling,
orchestrating, and managing cloud and IoT applications.

In this section, we first describe the mapping from EDMM
to TOSCA. Moreover, we present details of our prototypical
implementation, for example, the system architecture contain-
ing the main components of the prototype as well as our used
language for modeling data flows. Furthermore, we evaluated
our prototype regarding its performance in different scenar-
ios. For example, with different sized deployment models
regarding the amount of contained, and thus, to be placed
components and with different amounts of available providers.

A. Mapping to TOSCA

In EDMM, only a subset of entities of the TOSCA standard
is used: Deployment models are called service templates
in TOSCA, while components are called node templates
and relations are called relationship templates. Accordingly,
component types are called node types and relation types
are called relationship types in TOSCA. Furthermore, the
TOSCA standard defines some normative types for relations,
for example, hostedOn and connectsTo, that compliant de-
ployment systems have to support. In order to add additional
information to relationship types as well as node types, for
example, the username and password of a database or the
port of a web server, in TOSCA so-called properties can be
specified for node types as well as relationship types. Artifacts
in EDMM are mapped to deployment artifacts in TOSCA.
Deployment artifacts contain the business logic, therefore, they
are required for the execution of a component. Deployment
artifacts can be implemented using various technologies, for
example, a Python file implementing an analytic service. Fur-
thermore, operations in EDMM are mapped to parameterizable
management operations in TOSCA. For example, a cloud
provider or hypervisor node type usually provides management
operations to create and terminate virtual machines. They are
implemented by implementation artifacts, which can be imple-
mented using various technologies as well. For instance, as a
web service, a simple shell script, or by using a configuration
management technology, such as Ansible, Chef, or Puppet.
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components for implementing our prototype are highlighted in light grey.

B. System Architecture and Implementation Details

Winery is a graphical modeling tool for TOSCA and is part
of the OpenTOSCA ecosystem [46], [47]. Figure 4 gives an
overview of the Winery architecture highlighting newly added
and adapted components (light grey). The both UI components
TOSCA Topology Model Editor and Templates, Types & Plans
Management UI enable the modeling of deployment models
and the management of TOSCA elements, e.g., node types and
relationship types. The Winery back-end has an HTTP REST
API to enable the communication with the UI components.
Components of the back-end are, e.g., the TOSCA Topol-
ogy Model Importer for importing TOSCA-based deployment
models. The TOSCA elements, and all further artifacts, are
stored in corresponding databases, such as the Templates,
Types & Plans Database. For the sake of simplicity, other
components, e.g., an artifact generator or an exporter for
exporting the executable deployment models are omitted here.
In the middle of the architecture, there is the management
layer, called Templates, Types & Plans Management enabling
the management of templates, types, and other artifacts.

For implementing our approach, we adapted and extended
Winery. In order to select cloud providers based on their
location, for example, US-West and US-East, we enriched
the Cloud Provider Database to be able to support this
filter functionality. In this database, all components offered
by cloud providers are grouped together by using TOSCA-
compliant node templates as well as namespaces. Accordingly,
the Cloud Provider Management component was adapted
in order to reflect these changes. Our algorithms presented
in Section IV are part of the newly developed and added
Component Grouping & Placing component. The Topology
Completion component was adapted as well, according to our
changes proposed in Section IV. In order to enable the user to
upload a data flow model and, therefore, to start the placing

and completion process, the both Winery UI Components were
also extended. After uploading the data flow model, it is
parsed and an initial incomplete TOSCA-based deployment
model is created based on the data flow model (cf. step two
in Section III). Afterwards, the user can either modify the
generated deployment model manually, for example, by adding
additional components or specifying further requirements, or
start the algorithms for the automated grouping, placing,
as well as completion of the deployment model. After the
algorithms are finished, the resulting deployment model is
stored as a new service template in Winery, from where it
can be exported as a Cloud Service Archive (CSAR), which is
a packaging format defined by the TOSCA standard. Such a
CSAR can be deployed using a TOSCA-compliant deployment
system, such as the open-source OpenTOSCA container1 [48].

Listing 1 shows a simplified example of our pipes-and-filters
oriented model for defining data flows. The model is XML-
based and supports the both main elements Pipe and Filter.
Filters have an id and a type and can contain properties, such
as the DataSize in case of a database or the DataFactor in case
of a processing component. Further properties can be specified,
which are then adopted into the generated TOSCA deployment
model, for example, a location where a component should be
deployed or a database is already deployed. Pipes have an
id as well as a dataTransferType, specifying the type of the
connection, i.e., if the data is pulled from another component
or database, or pushed to it. In our data flow model, the
direction of the data flow is defined by specifying the Source
and Target of the pipe. This information is important, since in
TOSCA, a connectsTo relation only specifies which component
initiates the connection, but not the direction of the data flow.
Our prototypical implementation extending the functionality
of Winery as well as further exemplary data flow models and
generated deployment models are available on GitHub2.

1 <DataFlow id="ExampleDataFlow" ...>
2 <Filters>
3 <Filter id="RD3" type="MySQL-DB">
4 <Properties>
5 <DataSize unit="TB">10</DataSize>
6 ...
7 </Properties>
8 </Filter>
9 <Filter id="Adapter-3" type="...">

10 <Properties>
11 <DataFactor>0.2</DataFactor>
12 ...
13 </Properties>
14 </Filter>
15 ...
16 </Filters>
17 <Pipes>
18 <Pipe id="P1" dataTransferType="pull">
19 <Source>RD3</Source>
20 <Target>Adapter-3</Target>
21 </Pipe>
22 ...
23 </Pipes>
24 </DataFlow>

Listing 1. Exemplary data flow definition.

1https://github.com/OpenTOSCA/container/
2https://github.com/OpenTOSCA/winery/
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Fig. 5. Schematic structure of the three applications used for the evaluation.

C. Evaluation

In this section, we present the results of our evaluation
regarding the time, required to determine the placement of the
components of an application using our placement algorithm.
For this purpose, we modeled three differently sized exemplary
data processing applications. The first application contains 3
data sources and 4 data processing components, that need to
be placed. The second application contains 6 data sources
and 8 data processing components. And the third application
contains 9 data sources and 16 data processing components.
The schematic structure of these three exemplary applications
used for evaluating our prototype is depicted in Figure 5.
Furthermore, since the time required to place the components
is also highly depending on the amount of possibilities where
the components can be placed at, we created three scenarios.
One scenario with 5 providers, each supporting 2 locations.
A second scenario with 10 providers, each supporting 10
locations. And a third scenario with 100 providers, each
supporting 10 locations. Therefore, in the first scenario, there
are 10 potential placements for each component, in the second
scenario, there are 100 potential placements for each com-
ponent, and in the third scenario, there are 1000 potential
placements for each component of the modeled applications.

Table I shows the results of our measurements. The me-
dian based on 10 measurements for each case is calculated.
The table shows, that the amount of available providers and
locations has the greatest influence on the required time of
our placing algorithm, and not the size of the topologies. But,
the influence of the size of the topologies increases with the
number of possible placements. However, since our approach
was developed for use in data-intensive applications, e.g., with
several terabytes of data to be processed, the initial time for
determining the placement of the components is rather short
compared to the assumed runtime of such applications.

TABLE I
REQUIRED TIME TO PLACE ALL COMPONENTS

Topology A
(3D & 4C)*

Topology B
(6D & 8C)*

Topology C
(9D & 16C)*

5 Provider each
with 2 Locations

494 ms 513 ms 524 ms

10 Provider each
with 10 Locations

1043 ms 1080 ms 1148 ms

100 Provider each
with 10 Locations

6117 ms 7052 ms 7169 ms

* D = data sources; C = data processing components

VI. RELATED WORK

Various placement approaches and algorithms have been
proposed in the literature as surveyed in [49]–[51]. How-
ever, they are based on different optimization goals and
assumptions, and thus, they are hardly comparable to each
other. Therefore, in this section, we complete our discussion
about related work, which we already discussed partially in
Section II, and try to differentiate our approach from it.

The existing placement solutions aim to optimize various
objectives, for example, resource usage [52]–[54], availabil-
ity and reliability [55]–[57], energy consumption [58]–[60],
costs [61]–[63], or response time [64]–[66]. Moreover, there
are mono-objective approaches, such as [55] or [66] as well
as multi-objective approaches, such as [52] or [63] available.
Furthermore, the existing approaches rely on various method-
ologies, e.g., graph-theoretic methods [67]–[69], greedy algo-
rithms [70]–[72], mathematical optimization approaches [73]–
[75], as well as different kinds of heuristic approaches [76]–
[78]. Our presented work can be classified as a graph-based
and greedy approach. In the following, some research work
with focus on the transfer of data are presented in more detail.

Many of the existing approaches, for example, the proposals
of Lakshmanan et al. [79] and Gedik et al. [71], are designed
specifically for clustered environments, with an assumed net-
work latency of almost zero. Thus, these kind of approaches
are not really suitable for cases, where the network latency can
have a big impact on the performance and execution time of an
application. For example, when components of data-intensive
applications need to be distributed over various locations.

Other related work considering the network (e.g., [69],
[80]–[82]), are trying to minimize the amount of exchanged
data between computing nodes. While Fischer et al. [69]
used a graph partitioning technique for this, Eidenbenz et
al. [80] proposed a heuristic algorithm, also considering
the transfer cost. Moreover, Aniello et al. [81] and Xu et.
al [82] used a greedy best-fit heuristic in order to minimize
the traffic between nodes. In [81], the main goal is to co-
locate operators on a single node, based on the amount of
communication between them. In [82], the location of the
operators are assigned in descending order of incoming and
outgoing traffic. In the area of sensor networks, Abrams and
Liu [70] are using greedy placement heuristics in order to
optimize the placement cost and reduce the amount of required
bandwidth by considering tree-structured application graphs.
Gu et al. [83] investigated how the communication cost for
data stream processing applications in geo-distributed data
centers can be minimized. Therefore, they explored inter-data
center traffic cost diversities and considered virtual machine
placement, proposing a heuristic-based algorithm. Regarding
geo-distributed data stream processing systems, Zhu et al. [68]
explicitly takes communication delays for their placement into
account. However, in their proposed approach, they assume,
that a node can only host a single operator at most, which
seems to be an unrealistic assumption. With SpanEdge [84],
Sajjad et al. proposed an approach especially for fog com-



puting, enabling programmers to specify the parts of their
application that should be placed close to the data sources. The
goal is to reduce the bandwidth consumption and the response
latency. In order to optimize the provisioning resource costs,
with MIST [75], Arkian et al. presented a data analytics
scheme for placing IoT applications on fog resources as well.

While these introduced papers present different interest-
ing approaches and algorithms for optimizing the placement
regarding various optimizing goals, yet still the problem of
a practical solution supporting the modeling, placement, de-
ployment, as well as managing of arbitrary cloud and IoT
applications remains without considering the applications’
structure, its data flow, the placement of its components, and
the deployment of the application itself in a holistic manner.

There are also practical oriented research works available
about optimizing the distribution of cloud applications, e.g.,
the MOCCA method by Leymann et al. [85], the optimal
distribution framework by Andrikopoulos et al. [86], and
CloudMIG by Frey and Hasselbring [87]. Typically, they are
optimizing based on the providers’ offerings and mainly taking
factors, such as costs or availability into account and are not
considering relevant data processing factors, e.g., the data flow
of the application in order to improve the performance of it.

With MOCHA [23], Rodrı́guez-Martı́nez and Roussopoulos
presented a database middleware system designed to intercon-
nect data sources distributed over the network. The goal of
MOCHA is to improve performance by reducing the amount
of data that needs to be transferred. Therefore, data reducing
queries are moved to the location where the data resides,
whereas in case of data inflating queries the data to be pro-
cessed is moved to the query. However, besides the point that
their approach is limited to databases, only selective queries
stored in its catalog can be shipped by MOCHA, whereas
in our approach, by using TOSCA-based deployment models,
any component is supported to be shipped and deployed.

Regarding the transformation into executable TOSCA mod-
els, Hirmer and Mitschang [88] proposed an approach to trans-
form non-executable data mashup plans into an executable
format, by using categorized patterns and requirements, for
example, robustness, security, and time sensitiveness. While
their approach focuses on data processing and integration
scenarios, their goal is not to improve the performance of the
application by placing components depending on factors, for
example, data size or data flow, but to ease the integration and
execution of data-intensive cloud applications in general.

To our best knowledge, this work is the first deployment
model-based approach, that enables the automated placement
of components of data processing cloud and IoT applications
in a practical way, that not only improves the performance of
such applications depending on its data flow, but also supports
its lifecycle, i.e., modeling, deployment and management of it.
Moreover, in contrast to many mono-objective approaches, our
proposed approach also supports the specification of further
deployment restrictions and requirements, for example, re-
stricting the deployment according to data privacy regulations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a practical approach for auto-
matically placing components of data processing cloud appli-
cations, among others, based on the data flow and different
characteristics of the single components. Therefore, a novel
method as well as algorithms supporting this method were pre-
sented. The approach aims to improve the performance of dis-
tributed applications, by placing data processing components
as close as possible to the data sets that should be processed.
The approach is validated by a prototypical implementation
based on the TOSCA standard and the open-source ecosystem
OpenTOSCA. However, since TOSCA can be mapped to
the Essential Deployment Metamodel, our approach is not
only restricted to TOSCA but can be applied to any other
declarative deployment modeling language. We evaluated our
prototype under different scenarios and investigated the impact
of the size of the deployment models and the amount of
available cloud providers on the performance of the prototype.

We plan to extend the approach to support more characteris-
tics for the placement, for example, the current transfer speed
between locations. In order to determine the transfer speed
or transfer quality in general between different locations, we
plan to generate some kind of testing deployment model first,
for measuring the connection quality in between preselected
locations. Moreover, we want to integrate an additional step
about provisioning huge amounts of data into our method.
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[17] M. Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Leymann,
K. Saatkamp, and J. Soldani, “The Essential Deployment Metamodel:
A Systematic Review of Deployment Automation Technologies,” SICS
Software-Intensive Cyber-Physical Systems, 2019.

[18] OASIS, Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[19] ——, TOSCA Simple Profile in YAML Version 1.2, Organization for the
Advancement of Structured Information Standards (OASIS), 2019.
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[42] P. Hirmer, U. Breitenbücher, T. Binz, and F. Leymann, “Automatic
Topology Completion of TOSCA-based Cloud Applications,” in GI-
Jahrestagung. GI, 2014, vol. P-251, pp. 247–258.
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ner, J. Wettinger, and M. Zimmermann, “The OpenTOSCA Ecosystem
- Concepts & Tools,” European Space project on Smart Systems, Big
Data, Future Internet -Towards Serving the Grand Societal Challenges
-Volume 1: EPS Rome, pp. 112–130, 2016.

[47] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
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