Modelling of Simulation Workflows
Dipl.-Inf. Polina Malets, Jun.- Prof. Dr.-Ing. Dimka Karastoyanova, Prof. Dr. rer. nat. Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart, Germany

Motivation and Project Objectives

We develop an integrative simulation environment supporting different scientific domains.

- Easy-to-use environment for: modelling, testing, debugging, repairing and execution of simulation workflows
- Flexible, robust, user-friendly, enabling human interaction
- Management of data and information in scientific workflows
- Data provisioning
- Support for multiple data sources: sensors, databases, etc.
- Visualization of simulation results, visualization workflows, utilization of GPUs
- Support for integration of scientific computations, simulation software and hardware resources

Main tasks of the project “Modelling of Simulation Workflows” are to:

- Define a meta-model for scientific workflows and
- A modelling language specification defining syntax and semantic of constructs
- Develop an enhanced workflow modelling tool for modelling of simulation procedures in an intuitive manner adapted for scientists
- Define and implement a service catalogue

Modelling Extensions

Data Stream
- Support and integration of stream data from various sources with heterogeneous formats and frequency.
- Extension of workflow meta-model defining modelling constructs for stream processing, e.g. filtering, synchronization, disaggregation of data streams

Shared Context
- A simulation scope packages common context information of multiple simulation workflows and other shared data
- Enables support for multi-scale and multi-physics simulations with sequential and parallel simulation runs
- Synchronization and coupling mechanisms for multi-scale and multi-physics simulations in order to associate multiple simulation models corresponding to one common, real world phenomenon

Support for Choreography
- Enables data exchange between simulations
- The changes in one simulation can be immediately adopted in the other one, while the involved processes are running
- Choreography definition for multi-scale and multi-physics simulations

Flexibility
- Definition of break points enables a scientist to modify the workflow to get the desired course, if it deviates from the expectations
- Break points can be used to change the workflow structure, add, re-execute, remove activities or correct erroneous data
- Meta-model extension for and integration of break points in the prototype

Prototype

- Architecture and prototype of modelling tool with separate perspectives corresponding to each lifecycle phase of simulation process management
- Integration of data management activities using data reference to deal with data intensive scientific experiments – both meta-model and implementation level
- Extensions of meta-modell, modelling language and implementation of
 - data management activities
 - service catalogue
 - data references
 - perspectives

References